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Chapter 1

Preface

1.1 Introduction

What is ggplot2?

• An R package for producing statistical graphics.

• A language, based on the Grammar of Graphics (Wilkinson, 2005), for describing and
creating plots.

• A set of independent components that minimise the code needed to produce complex
graphics

• Plots that can be built up iteratively and edited later

It builds on top of the grid graphics system (Murrell, 2005a), and also provides many
features that take the hassle out of making graphics. For example, it produces legends
automatically, makes it easy to combine data from multiple sources, to produce the same
plot for different subsets of a data set.

This book provides a practical introduction to ggplot2 with lots of example code and
graphics. It also explains the grammar on which ggplot2 is based. Like other formal
systems, ggplot2 is useful even when you don’t understand the underlying model. However,
the more you learn about the it, the more effectively you’ll be able to use ggplot2.

This book assumes basic some familiarity with R, to the level described in the first chapter
of Dalgaard’s Introductory Statistics with R. This book will introduce you to ggplot2 as
a novice, unfamiliar with the grammar, and turn you into an expert who can build new
components to extend the grammar.

1.2 Other resources

This book does not exhaustively cover every possible use of ggplot2. It does not document
every function in detail and it does not describe every possible plot you could make. What
it does do, however, is teach you what all the pieces are and how they fit together. By the
end of reading this book, you should be able to build new and unique plots specifically
tailored to your needs.
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1 Preface

However, you still need to be able to get precise details of individual components.
The best resource for this will always be the built in documentation. This is accessible
online, http://had.co.nz/ggplot, and from within R, using the usual help syntax. This
website also lists talks and papers related to ggplot2. The cran website, http://cran.
r-project.org/web/packages/ggplot2/, is another useful resource. This will tell you
provides convenient links to what’s new and different in each release.

The book website, http://had.co.nz/ggplot2/book, provides updates to this book,
All graphics used on the book are displayed on the site, along with the code and data
needed to reproduce them. There is also a gallery of ggplot2 graphics used in real life. If
you would like your graphics to be included in the gallery, please send me reproducible
code and a paragraph or two describing your plot.

1.3 What is the grammar of graphics?

Wilkinson (2005) created the grammar of graphics to describe the deep features that underlie
all statistical graphics. The grammar of graphics is an answer to a question: what is a
statistical graphic? My take on the grammar is that a graphic is a mapping from data
to aesthetic attributes (colour, shape, size) of geometric objects (points, lines, bars). The
plot may also contain statistical transformations of the data, and is drawn on a specific
coordinate system. Faceting can be used to generate the same plot for different subsets
of the dataset. It is the combination of these independent components that make up a
graphic. A detailed description of the formal grammar of ggplot2 and how it differs from
Wilkinson’s can be found in Wickham (Tentatively accepted).

As the book progresses, the formal grammar will be explained in increasing detail. The
first description of the components follows below. It introduces some of the terminology that
will be used throughout the book, and outlines the basic responsibilities of each component.

• The data that you want to visualise, and a set of aesthetic mappings describing
how variables in the data are mapped to aesthetic attributes that you can perceive.

• Geometric objects (geoms for short) represent what you actually see on the plot:
points, lines, polygons, etc.

• Statistics transformations (stats for short) summarise data in many useful ways. For
example, binning and counting to create a histogram. They are optional, but very
useful.

• The scales map values in the data space to values in an aesthetic space, whether it
be colour, or size, or shape. Scales also provide an inverse mapping, a legend or axis,
to make it possible to read the original data values off the graph.

• A coordinate system (coord for short) describes how data coordinates are mapped
to the plane of the graphic. It also provides axes and gridlines to make it possible
to read the graph. We normally use a cartesian coordinate system, but many others
are available, including polar, cartographic projections, and hierarchical coordinate
systems for categorical data.
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1.4 How does ggplot2 fit in with other R graphics?

• A faceting specification describes how to break up the data into subsets and how
to display those subsets as small multiples. This is also known as conditioning or
latticing/trellising.

It is also important to talk about what the grammar doesn’t do:

• It doesn’t suggest what graphics you should use to answer the questions you are
interested in. While this book endeavours to promote a sensible process for producing
plots of data, the focus of the book is on how to produce the plots you want, not
knowing what plots to produce. For more advice on this topic, you may want to
consult Chambers et al. (1983); Cleveland (1993a); Robbins (2004); Tukey (1977).

• Ironically, the grammar doesn’t specify what a graphic should look like. The finer
points of display, for example, font size or background colour, are not specified by the
grammar. In practice, a useful plotting system will need to describe these, as ggplot2
does. Similarly, the grammar does not specify how to make an attractive graphic, and
while the defaults in ggplot2 have been chosen with care, you may need to consult
other references to create an attractive plot: Tufte (1990, 1997, 2001, 2006).

• It does not describe interaction: the grammar of graphics describes only static graphics,
and there is essentially no benefit to displaying on a computer screen as opposed to
on a piece of paper. ggplot2 can only create static graphics, so for dynamic and
interactive graphics you will have to look elsewhere. Cook and Swayne (2007) provides
an excellent introductions the interactive graphics package GGobi. GGobi can be
connected to R with the rggobi package (Wickham et al., Under revision).

1.4 How does ggplot2 fit in with other R graphics?

There are a number of other graphics systems available in R: base graphics, grid graphics
and trellis/lattice graphics. How does ggplot2 differ from them?

• Base graphics were “hacked” together by Ross Ihaka based on experience implementing
S graphics driver and partly looking at Chambers et al. (1983). Base graphics basically
has a pen on paper model: you can only draw on top of the plot, you can not modify
or delete existing content. There is no (user accessible) representation of the graphics,
apart from their appearance on the screen. Base graphics includes both tools for
drawing primitives and entire plots. Base graphics functions are generally fast, but
have limited scope. When you create a single scatterplot, or histogram, or a set of
boxplots, you’re probably using base graphics.

• The development of grid graphics, a much richer system of graphical primitives,
started in 2000. Grid is developed by Paul Murrell, growing out of his PhD work
(Murrell, 1998). Grid grobs (graphical objects) can be represented independently of
the plot and modified later. A system of viewports (each containing its own coordinate
system) makes it easier to layout complex graphics. Grid provides drawing primitives,
but no tools for producing statistical graphics.

3



1 Preface

• The lattice package (Sarkar, 2008a), developed by Deepayan Sarkar, uses grid
graphics to implement the trellis graphics system of Cleveland (1993a, 1985), and is a
considerable improvement over base graphics. You can easily produce conditioned
plots, and some plotting details (eg. legends) are taken care of automatically. However,
lattice graphics lacks a formal model, which can make it hard to extend. Lattice
graphics are explained in depth in (Sarkar, 2008b).

• ggplot2, started in 2005, is an attempt to take the good things about base and
lattice graphics and improve on them with a strong underlying model which supports
the production of any kind of statistical graphic, based on principles outlined above.
The solid underlying model of ggplot2 makes it easy to describe a wide range of
graphics with a compact syntax, and independent components make extension easy.
Like lattice, ggplot2 uses grid to draw the graphics, which means you can exercise
much low level control over the appearance of the plot

Many other R packages, such as vcd (Meyer et al., 2006), plotrix (Lemon et al., 2008)
and gplots (source code and/or documentation contributed by Ben Bolker and Lumley,
2007), implement specialist graphics, but no others provide a framework for producing
statistical graphics. A comprehensive resource listing all graphics functionality available
in other contributed packages is the graphics task view at http://cran.r-project.org/
web/views/Graphics.html.

1.5 About this book

• Chapter 2 describes how to quickly get started using qplot to make graphics, just
like you can using plot. This chapter introduces several important ggplot2 concepts:
geoms, aesthetic mappings and faceting.

• While qplot is a quick way to get started, you are not using the full power of the
grammar. Chapter 3 describes the layered grammar of graphics which underlies
ggplot2. The theory is illustrated in Chapter 4 with examples showing how to build
up a plot piece by piece, exercising full control over the available options. You will
learn about the different components of a plot, laying the ground for the following
chapters which describe these components in detail and teach you how to build your
own.

• Chapter ?? describes how assemble the components of ggplot2 to solve particular
plotting problems.

• Understanding how scales works is crucial for fine tuning the perceptual properties of
your plot. Customising scales gives fine control over the exact appearance of the plot,
and helps to support the story that you are telling. Chapter 5 will show you what
scales are available, how to adjust their parameters, and how to create your own.

• There are three different ways to tweak the position of plots: coordinate systems,
faceting and position adjustments. These are described in Chapter ??
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1.6 Installation

• Sometimes you need more control over the output than ggplot2 provides. In this
case, you will need to modify the low level grid output used to draw the graphics. In
Chapter 7, you will learn how this output is constructed, how to control and modify
it, and how to add additional annotations to the plot.

• Two appendices provide additional useful information. Appendix ?? describes how
colours, shapes, line types and sizes can be specified by hand, and Appendix ?? shows
how to translate from base graphics, lattice graphics, and Wilkison’s gpl to ggplot2
syntax.

1.6 Installation

To useggplot2, you must first install it. Make sure you have a recent version of R (at
least version 2.7) from http://r-project.org, and then run the following line of code to
download and install the ggplot2 package.

install.packages("ggplot2")

ggplot2 isn’t perfect, so from time to time you may encounter something that doesn’t
work the way it should. If this happens, please email me at h.wickham@gmail.com with a
reproducible example of your problem, as well as a description of what you think should
have happened. The more information you provide, the easier it is for me to help you.

1.7 Acknowledgements

Many people have contributed to this book with high-level structural insights, spelling and
grammar corrections and bug reports. In particular, I would to thank: Lee Wilkinson, for
discussions that cemented my understanding of the grammar; Gabor Grothendienk, for
early helpful comments; Heike Hofmann and Di Cook, for being great major professors;
Charlotte Wickham; the students of stat480 and stat503 at ISU, for using it; Debby Swayne,
for masses of helpful feedback and advice; Bob Muenchen; Reinhold Kleigl; ...
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Chapter 2

Getting started with ggplot: qplot

2.1 Introduction

In this chapter, you will learn to make a wide variety of plots with your first ggplot function,
qplot, short for quick plot. qplot makes it easy to produce complex plots, often requiring
several lines of code using other plotting systems, in one line. qplot can do this because
it’s based on the grammar of graphics, which allows you to create a simple, yet expressive,
description of the plot. In later chapters you’ll learn to use all of the expressive power of
the grammar, but here we’ll start simple so you can work your way up. You will also start
to learn some of the ggplot terminology that will be used throughout the book.
qplot has been designed be very similar to plot, which should make it easy if you’re

already familiar with plotting in R. Remember, during an R session you can get a summary
of all the arguments to qplot with R help, ?qplot.

In this chapter you’ll learn:

• The basic use of qplot—If you’re already familiar with plot, this will be particularly
easy, § 2.3.

• How to map variables to aesthetic attributes, like colour, size and shape, § 2.4.

• How to create many different types of plots by specifying different geoms, and how to
combine multiple types in a single plot. Page § 2.5.

• The use of faceting, also known as trellising or conditioning, to break apart subsets of
your data, § 3.5.4.

• How to tune the appearance of the plot by specifying some basic options, § 2.7.

• A few important differences between plot and plot, § 2.8

2.2 Data sets

In this chapter we’ll just use one data source, so you can get familiar with the plotting
details rather than having to familiarise yourself with different datasets. The diamonds
dataset consists of prices and quality information about 54,000 diamonds, and is included
in the ggplot package. The dataset has not been well cleaned, so as well as demonstrating

7



2 Getting started with ggplot: qplot

interesting relationships about diamonds, it also demonstrates some data quality problems.
We’ll also use another dataset, dsmall, which is a random sample of 1000 diamonds. We’ll
use this for plots which are more appropriate for smaller datasets. The first few rows of the
data are shown in Table 2.1.

carat cut color clarity depth table price x y z
1 0.2 Ideal E SI2 61.5 55.0 326 3.95 3.98 2.43
2 0.2 Premium E SI1 59.8 61.0 326 3.89 3.84 2.31
3 0.2 Good E VS1 56.9 65.0 327 4.05 4.07 2.31
4 0.3 Premium I VS2 62.4 58.0 334 4.20 4.23 2.63
5 0.3 Good J SI2 63.3 58.0 335 4.34 4.35 2.75
6 0.2 Very Good J VVS2 62.8 57.0 336 3.94 3.96 2.48

Table 2.1: diamonds dataset

2.3 Basic use

As with plot, the first two arguments to qplot() are x and y, giving the x- and y-
coordinates for the objects on the plot. There is also an optional data argument. If this
is specified, qplot() will look inside that data frame before looking for objects in your
workspace. Using the data argument is recommended: it’s a good idea to keep related data
in a single data frame. If you don’t specify one, qplot() will try to build one up for you
and may find the other variables bearing the same names.

Here is a simple example of the use of qplot(). It produces a scatterplot showing the
relationship between the price and carats (weight) of a diamond.

> qplot(carat, price, data=dsmall)
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The plot shows a strong correlation with notable outliers and some interesting vertical
striation. The relationship looks exponential, though, so the first thing we’d like to do is to
transform the variables. Because qplot() accepts functions of variables as arguments, we
plot log(price) vs. log(carat):

> qplot(log(carat), log(price), data=dsmall)
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2.4 Colour, size, shape and other aesthetic attributes
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The relationship now looks linear. With this much overplotting, though, we need to be
cautious about drawing firm conclusions.

Arguments can also be combinations of existing variables, so, if we are curious about the
relationship between the volume of the diamond (approximately x× y × z) and its weight,
we can look at the following:

> qplot(carat, x * y * z, data=dsmall)
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We would expect the density of diamonds to be constant, and thus to see a linear
relationship between volume and weight. The majority of diamonds do seem to fall along a
line, but there are some large outliers.

2.4 Colour, size, shape and other aesthetic attributes

The first big difference when using qplot instead of plot comes when you want to assign
colours—or sizes or shapes—to the points on your plot. With plot, it’s your responsibility
to convert a categorical variable in your data (e.g., “apples”, “bananas”, “pears”) into
something that plot knows how to use (e.g., “red”, “yellow”, “green”). qplot can do this
for you automatically, and it will automatically provide a legend that maps the displayed
attributes to the data values. This makes it easy to include additional data on the plot.

In the next example, we augment the plot of carat and price with information about
diamond colour, clarity and cut.

Colour, size and shape are all examples of aesthetic attributes, visual properties that
affect the way observations are displayed. For every aesthetic attribute, there is a function,
called a scale, which maps data values to valid values for that aesthetic. It is this scale that
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Figure 2.1: Mapping colour (using the argument ”colour=cut”, left), size (”size=cut”, middle) and
shape (”shape=cut”, right) of points to quality of cut.

controls how the points appear. For example, in the above plots, the colour scale maps J to
purple and F to green. (Note that while I use British spelling throughout this book, the
software also accepts American spellings.)

You can also manually set the aesthetics using I(). For example, colour = I("red") or
size = I(2). This is different from mapping and is explained in more detail in Section ??.
For large data sets, like the diamonds data, semi-transparent points are often useful
to alleviate some of the overplotting. To make a semi-transparent colour you can use
alpha(colour, transparency), where colour is an R colour (described in Appendix A)
and transparency is a value between 0 (completely transparent) and 1 (complete opaque).
It’s often useful to specify the transparency as a fraction, e.g. 1/10 or 1/20, as the
denominator specifies the number of points that must overplot to get a completely opaque
colour.

Scales are the essential difference between setting and mapping - mapping uses a scale,
setting does not.

Different types of aesthetic attributes work better with different types of variables. For
example, colour and shape work well with categorical variables, while size works better with
continuous variables. The amount of data also makes a difference: if there is a lot of data,
like in the plots above, it can be hard to distinguish the different groups. An alternative
solution is to use faceting, which will be introduced in Section 3.5.4.

2.5 Plot geoms

qplot is not limited to scatterplots, but can produce almost any kind of plot by varying
the geom argument. Geom, short for geometric object, describes the type of object that is
used to display the data. Some geoms have an associated statistical transformation, for
example, a histogram is a binning statistic plus a bar geom. These different components
are described in the next chapter. Here we’ll introduce you to the most common and useful
geoms, divided up by the dimensionality of data that they work with. The following geoms
enable you to investigate two-dimensional relationships:

• geom="point" draws points to produce a scatterplot (the default), as described above.
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2.5 Plot geoms

• geom="smooth" fits a smoother to the data and displays the smooth and its standard
error, § 2.5.1.

• geom="quantile" displays conditional density estimates. You can think of this as
a extension of boxplots to deal with the case of a continuous conditioning variable,
§ 2.5.2.

• geom="density2d" adds contours of a 2d density estimate. This is very useful when
you have a lot of overplotting, § 2.5.3

• geom="boxplot" produces a box and whisker plot to summarise the distribution of a
set of points, § 2.5.4

• geom="path" and geom="line" draw lines between the data points. Traditionally
these are used to explore relationships between time and another variable, but lines
may to be use to join observations connected in some other way. A line plot is
constrained to produce lines that travel from left to right, while paths can go in any
direction. § 2.5.7.

For 1d distributions, your choice of geoms is guided by the variable type:

• For continuous variables, geom="histogram" draws a histogram and geom="density"
creates a density plot, § ??.

• For discrete variables, geom="bar" makes a barchart, § 2.5.6.

2.5.1 Adding a smoother to a plot

If you have a scatterplot with many data points, it can be hard to see exactly what trend
is shown by the data. In this case you may want to add a smoothed line to the plot. This
is easily done using the smooth geom:

> qplot(carat, price, data=dsmall, geom=c("smooth", "point"))

Despite overplotting, our impression of a exponential relationship between price and
carat was correct, but we’ll have to do something about that influential outlier.

Notice that we have combined multiple geoms by supplying a vector of geom names
to qplot. The geoms will be overlaid in the order in which they appear. By default, a
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2 Getting started with ggplot: qplot

point-wise confidence interval is shown with a grey band around the smoother. If you want
to turn it off, use se=FALSE.

There are many different smoothers you can choose using the method argument:

• method=‘‘loess’’, the default, uses a smooth local regression. More details about
the algorithm used can be found in ?loess. The wiggliness of the line is controlled
by the span parameter, which ranges from 0 (exceeding wiggly) to 1 (not so wiggly),
as shown in Figure 2.5.1. Loess does not work well for large datasets (it’s O(n2) in
memory), so you’ll need to use one of the other methods listed below.

Figure 2.2: The effect of the span parameter. (Left) span = 0.1, and (right) span = 1

• method=‘‘lm’’ fits a linear model. The default will fit a straight line to your data,
or you can specify formula = y ∼ poly(x, 2) to specify a degree 2 polynomial,
or better, load the splines library and use a natural spline: formula = y ∼ ns(x,
2). The second parameter is the degrees of freedom: a higher number will create a
wigglier curve. You are free to specify any formula involving x and y.

Figure 2.3: The effect of the formula parameter, using a linear model as a smoother. (Left)
formula = y ~ x, the default; (Right) formula = y ~ ns(x, 3)

• method=‘‘rlm’’ works like lm, but uses a robust fitting algorithm so that outliers
don’t affect the fit as much. It’s part of the MASS package, so remember to load that
first.
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2.5 Plot geoms

• You could also load the mgcv library and use method="gam", formula = y ∼ s(x)
to fit a generalised additive model. This is similar to using a spline with lm, but the
degree of smoothness is estimated from the data. For large data, use the formula y
∼ s(x, bs="cr")

Figure 2.4: The effect of the formula parameter, using a linear model as a smoother. (Left)
formula = y ~ s(x), the default; (Right) formula = y ~ s(x, bs="cr")

2.5.2 Quantiles

We have just seen one example of the use of qplot to enhance plots of raw data with
distributional statistics: the smoothed conditional mean and standard error. It is equally
easy to add quantiles to describe the spread of the data. We can do this with quantile
regression (Koenker, 2005), which estimates smoothed conditional distributions. The
functional form is more limited than for the smooth geom, but we can learn more about
the conditional distribution.

For this example we will zoom in on a small range of diamond weights to look more
closely at the distribution of price vs. carat.

> dlittle <- subset(dsmall, carat < 2)
> qplot(carat, price, data=dlittle, geom=c("point", "quantile"))

The relationship between x and y is assumed by default to be linear, as shown in the
above plot, but we can adjust the relationship using the formula argument, as we did for
smoothing. Figure 2.5.2 shows a natural spline at left and a linear model with fixed break
points at right. By default only the median and upper and lower quartiles are shown.
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In Figure 2.5.2, we have added 5%, 15%, ..., 95% quantiles using the argument quantiles
= seq(0.05, 0.95, 0.1).

Figure 2.5: The formula argument is used to control the functional form of the rela-
tion. (left) A natural spline with five degrees of freedom, formula = y ~ ns(x, 5)
and (right) a linear model with break points at 0.5, 1, and 1.5 carats,
formula = y ~ x + I(x > 0.5) + I(x > 1) + I(x > 1.5))

Figure 2.6: Showing 5%, 15%, ..., 95% quantiles with quantiles = seq(0.05, 0.95, 0.1)

2.5.3 Two-dimensional density contours

When a scatterplot suffers from overplotting, it is hard to judge the relative density of points.
This can happen even when the number of points is not large, as with the scatterplot of
price vs. carat for a subset of the data. One solution is to supplement the plot with contour
lines from a 2d density estimate, using geom=c(‘‘point’’, ‘‘density2d’’). Figure ??
shows the resulting plot for all the diamonds and makes it clear that most of them are
relatively small and inexpensive.

The density estimation is carried out by kde2d(), which is described in more detail in
its documentation.
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Figure 2.7: Scatterplot of price vs. carat supplemented with contours of a 2d density estimate
(geom=c(‘‘point’’, ‘‘density2d’’)). Most diamonds are small and cheap.

2.5.4 Boxplots and jittered points

When a set of data includes a categorical variable and one or more continuous variables,
you will probably be interested to know how the values of the continuous variables vary
with the levels of the categorical variable. Box plots and jittered points offer two ways
to do this. Figure 2.5.4 explores how the distribution of price per carat varies with the
colour of the diamond using jittering (geom=‘‘jitter’’, left) and box and whisker plots
(geom=’’boxplot’’, right).

Figure 2.8: Using jittering (left) and boxplots (right) to investigate the distribution of price per carat
conditional on colour. As the colour improves (from left to right) the spread of values decreases,
but there is little change in the middle half of the distribution.

Each method has its strengths and weaknesses. Boxplots summarise the bulk of the
distribution with only five numbers, while jittered plots can suffer from overplotting. In the
example here, both plots show the dependency of the spread of price per carat on diamond
colour, but the boxplots are more informative, indicating that there is very little change in
the median and adjacent quartiles.

The overplotting seen in the plot of jittered values can be alleviated somewhat by using
semi-transparent points using the colour argument. Figure 2.5.4 illustrates three different
levels of transparency, which make it easier to see where the bulk of the points lie. For the
leftmost plot, for example, the command is:
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qplot(color, price/carat, data=diamonds, geom=’’jitter’’, colour=I(alpha(‘‘black’’,
1/5)))

This technique can’t show the positions of the quantiles as well as a boxplot can, but it
may reveal other features of the distribution that a boxplot can not.

Figure 2.9: Varying the alpha level. From left to right: 1/5, 1/50, 1/200. As the opacity decreases
we begin to see where the bulk of the data lies. However, the boxplot still does much better.

For jittered points, qplot offers the same control over aesthetics as it does for a normal
scatterplot: size, colour, and shape. For boxplots you can control the outline colour
(colour), the internal fill (fill) and the size of the lines (size).

Another way to look at conditional distributions is to use faceting to plot a separate
histogram or density plot for each value of the categorical variable. This is demonstrated
in Section 3.5.4.

2.5.5 Histogram and density plots

Histogram and density plots show the distribution of a single variable. They provide more
information about the distribution of a single group than boxplots do, but it is harder to
compare many groups (although we will look at one way to do so). Figure 2.5.5 shows the
distribution of carats with a histogram and a density plot.
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Figure 2.10: Displaying the distribution of diamonds. (Left) geom = "histogram" and (right)
geom = "density"
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For the density plot, the adjust argument controls the bandwidth of the smoother (high
values of adjust produce smoother plots). For the histogram, the binwidth argument
controls the amount of smoothing by setting the bin size. (Break points can also be specified
explicitly, using the breaks argument.) It is very important to experiment with the level
of smoothing. With a histogram you should try many bin widths: You may find that gross
features of the data show up well at a large bin width, while finer features require a very
narrow width.

In Figure 2.5.5, we experiment with three values of binwidth: 1.0, 0.1, and 0.01. It is
only in the plot with the smallest bin width (right), that we see the striations we noted in
an earlier scatterplot, most at “nice” numbers of carats. The full command is:
qplot(carat, data=diamonds, geom="histogram", binwidth=1, xlim=c(0,3))

carat

co
un

t

0

5000

10000

15000

20000

25000

30000

35000

0.0 0.5 1.0 1.5 2.0 2.5 3.0
carat

co
un

t

0

2000

4000

6000

8000

10000

0.0 0.5 1.0 1.5 2.0 2.5 3.0
carat

co
un

t

0

500

1000

1500

2000

2500

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 2.11: Varying the bin width on a histogram of carat reveals interesting patterns. Binwidths
from left to right: 1, 0.1, and 0.01 carats. Only diamonds with carats between 0 and 3 shown.

To compare the distributions of different subgroups, just add an aesthetic mapping, as
follows:
qplot(carat, data=diamonds, geom=‘‘density’’, colour=color, size=I(1.5))
Mapping a categorical variable to an aesthetic will automatically split up the geom by

that variable, so this command instructs qplot to draw a density plot for each level of
diamond color, and to draw each curve using a different colour and a fixed line width of 1.5.
It produces the first plot in Figure 2.5.5.

The second plot is produced with a similar command:
qplot(carat, data=diamonds, geom=‘‘histogram’’, fill=color)
The density plot is more appealing at first because it seems easy to read and compare

the various curves. However, it is more difficult to understand exactly what a density plot
is showing. In addition, the density plot makes some assumptions that may not be true for
our data; i.e., that it is unbounded, continuous and smooth.

2.5.6 Bar charts

The discrete analogue of histogram is the bar chart, geom = ‘‘bar’’. The bar geom
counts the number of instances of each class so that you don’t need to tabulate your values
beforehand with barchart in base R. If the data has already been tabulated or if you’d like
to tabulate class members in some other way, such as by summing up a continuous variable,
you can use the weight geom. This is illustrated in Figure ??. The first plot is a simple
bar chart of diamond colour, and the second is a bar chart of diamond colour weighted by
carat:
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Figure 2.12: Mapping a categorical variable to an aesthetic will automatically split up the geom by
that variable. (Left) Density plots are overlaid and (right) histograms are stacked.
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Figure 2.13: Bar charts of diamond colour. The left plot shows counts and the right plot is weighted
by weight = carat to show the total weight of diamonds of each colour.

2.5.7 Time series with line and path plots

Line and path plots are typically used for time series data. Line plots always join the points
from left to right, while path plots join them in the order that they appear in the data set
(a line plot is just a path plot of the data sorted by x value). Line plots usually have time
on the x-axis, showing how a single variable has changed over time. Path plots show how
two variables have simultaneously changed over time, with time encoded in the way that
the points are joined together.

Because there is no time variable in the diamonds data, we use the economics dataset,
which contains economic data on the US measured over the last 40 years. Figure 2.5.7 shows
two plots of unemployment over time, both produced using geom="line". The first shows
an unemployment rate and the second shows the median number of weeks unemployed. We
can already see some differences in these two variables, particularly in the last peak, where
the unemployment percentage is lower than it was in the preceding peaks, but the length
of unemployment is high.

To examine this relationship in greater detail, we would like to draw both time series on the
same plot. We could draw a scatterplot of unemployment rate vs. length of unemployment,
but then we could no longer see the evolution over time. The solution is to join points
adjacent in time with line segments, forming a path plot.
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Figure 2.14: Two time series measuring amount of unemployment. (left) Percent of population that
is unemployed and (right) median number of weeks unemployed. Plots created with geom="line".

Below we plot unemployment rate vs. length of unemployment and join the individual
observations with a path. Because of the many line crossings, the direction in which time
flows isn’t easy to see in the first plot. In the second plot, we apply the size aesthetic to
the line, increasing its width as time advances.
qplot(unemploy/pop, uempmed, data=economics, geom="path", size=year(date))

We can see that percent unemployed and length of unemployment is highly correlated,
although in recent years the length of unemployment has been increasing relative to the
unemployment rate.

> year <- function(x) as.POSIXlt(x)$year + 1900
> qplot(unemploy/pop, uempmed, data=economics, geom="path")
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> qplot(unemploy/pop, uempmed, data=economics, geom="path", size=year(date))

19



2 Getting started with ggplot: qplot

unemploy/pop

ue
m

pm
ed

4

6

8

10

12

0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050

year(date)

2000

1990

1980

1970

With longitudinal data, you often want to display multiple time series on each plot,
each series representing one individual. To do this with qplot(), you need to map the
group aesthetic to a variable encoding the group membership of each observation. This is
explained in more depth in Section 4.5.3.

2.6 Faceting

We have already discussed using aesthetics (colour and symbol) to compare subgroups,
drawing all groups on the same plot. Faceting takes an alternative approach: It creates
tables of graphics by splitting the data into subsets and displaying the same graph for each
subset in an arrangement that facilitates comparison. Section ?? discusses the advantages
and disadvantages of these two methods in more detail.

The default faceting method in qplot() creates plots arranged on a grid specified by a
faceting formula which looks like row var ∼ col var. You can specify as many row and
column variables as you like, keeping in mind that using more than two variables will often
produce a plot so large that it is difficult to see on screen. To facet on only one of columns
or rows, use . as a place holder. For example, row var ∼ . will create a single column
with multiple rows.

Figure 2.6 illustrates this technique with two plots, sets of histograms showing the
distribution of carat conditional on colour. This command generates the first column of
plots, which shows counts:
qplot(carat, data=diamonds, facets=color ., geom="histogram", binwidth=0.1,

xlim=c(0, 3)) The second set of histograms shows proportions, making it easier to
compare distributions regardless of the relative abundance of diamonds of each colour.
High-quality diamonds (colour D) are skewed towards small sizes, and as quality declines
the distribution becomes more flat.

2.7 Other options

These are a few other qplot options to control the graphic’s appearance. These all have
the same effect as their plot equivalents:

• xlim, ylim: set limits for the x- and y-axes, each a numeric vector of length two, e.g.
xlim=c(0, 20) or ylim=c(-0.9, -0.5).
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Figure 2.15: Histograms showing the distribution of carat conditional on colour. (Left) Bars show
counts and (Right) bars show densities (proportions of the whole). The density plot makes it easier
to compare distributions ignoring the relative abundance of diamonds within each colour. Facets
created with facets = colour ~ .
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• log: a character vector indicating which (if any) axes should be logged. For example,
log="x" will log the x-axis, log="xy" will log both.

• main: main title for the plot, centered in large text at the top of the plot. This can be a
string (eg. main="plot title") or an expression (eg. main = expression(beta[1]
== 1)). See ?plotmath for more examples of using mathematical formulae.

• xlab, ylab: labels for the x- and y-axes. As with the plot title, these can be character
strings or mathematical expressions.

The following examples show the options in action.

> qplot(
+ carat, price, data=dsmall,
+ xlab="Price ($)", ylab="Weight (carats)",
+ main="Price-weight relationship"
+ )
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> qplot(
+ carat, price/carat, data=dsmall,
+ ylab = expression(frac(price,carat)),
+ xlab = "Weight (carats)",
+ main="Small diamonds",
+ xlim = c(.2,1)
+ )
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2.8 Differences from plot

There are a few important differences between plot and qplot:

• Because qplot can produce both 1d and 2d plots, you must always specify both x and
y for 2d plots. This is different to the behaviour of plot, which uses seq along(y)
for x if it is not explicitly specified.

• qplot is not generic: you can not pass any type of R object to qplot and expect to
get some kind of default plot. Note, however, that ggplot() is generic, and may
provide a starting point for producing visualisations of arbitrary R objects.

• Values passed to the aesthetic attributes are mapped to values by scales. If you want
the values to be interpreted directly, surround use I(): colour = I("red"). See
also scale manual, Page ??.

• While you can continue to use the base R aesthetic names (col, pch, cex, etc.), it’s a
good idea to switch to the more descriptive ggplot2 aesthetic names (colour, shape,
and size).

• To add further graphic elements to a plot produced in base graphics, you can use
points(), lines() and text(). With ggplot2, you need to add additional layers
to the existing plot, described in the next chapter.
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2 Getting started with ggplot: qplot
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Chapter 3

Mastering the grammar

3.1 Introduction

You can choose to use just qplot(), without any understanding of the underlying grammar,
but you will not be able to use the full power of ggplot. By learning more about the
grammar, and the components that make it up, you will be able to create a wider range
of plots, as well as being able to combine multiple sources of data, and customise to your
heart’s content. You may want to skip this chapter in a first reading of the book, coming
back to it when you want a deeper understanding of how all the pieces fit together.

This chapter describes the theoretical basis of ggplot2: the layered grammar of graphics.
The layered grammar is based on Wilkinson’s grammar of graphics (Wilkinson, 2005), but
adds a number of enhancements that help it to be more expressive and fit smoothly into the
R environment. The differences between the layered grammar and Wilkinson’s grammar are
described fully in (Wickham, 2008), and a guide for converting between gpl and ggplot2
is included in Appendix ??. In this chapter you will learn a little bit about each component
of the grammar and how they all fit together. The next chapters discuss the components in
more detail, and provide more examples of how you can use them in practice.

This chapter begins by describing in detail the process of drawing a simple plot. Section 3.3
start with a simple scatterplot, then in Section 3.4 make it more complex by adding a
smooth line and facetting. While working through these examples you will be introduced
to all six components of the grammar, which are then defined more precisely in Section 3.5.
The chapter concludes with Section 3.6, which describes how the various components map
to data structures in R.

3.2 Fuel economy data

Consider the fuel economy dataset illustrated in Table 3.1. It records make, model, class,
engine size, transmission and fuel economy for a selection of US cars in 1999 and 2008. It
contains the 38 models that had a new release every year, an indicator that the car was
a popular model. These models are the Audi A4, Audi A4 Quattro, Audi A6 Quattro,
Chevrolet C1500 Suburban 2wd, Chevrolet Corvette, Chevrolet K1500 Tahoe 4wd, Chevrolet
Malibu, Dodge Caravan 2wd, Dodge Dakota Pickup 4wd, Dodge Durango 4wd, Dodge
Ram 1500 Pickup 4wd, Ford Expedition 2wd, Ford Explorer 4wd, Ford F150 Pickup 4wd,
Ford Mustang, Honda Civic, Hyundai Sonata, Hyundai Tiburon, Jeep Grand Cherokee
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3 Mastering the grammar

manufacturer model disp year cyl cty hwy class

audi a4 1.8 1999 4 18 29 compact
audi a4 1.8 1999 4 21 29 compact
audi a4 2.0 2008 4 20 31 compact
audi a4 2.0 2008 4 21 30 compact
audi a4 2.8 1999 6 16 26 compact
audi a4 2.8 1999 6 18 26 compact
audi a4 3.1 2008 6 18 27 compact
audi a4 quattro 1.8 1999 4 18 26 compact
audi a4 quattro 1.8 1999 4 16 25 compact
audi a4 quattro 2.0 2008 4 20 28 compact

Table 3.1: The first 10 cars in the mpg data set, included in the ggplot2 package. cty and hwy
record miles per gallon (mpg) for city and highway driving respectively.

4wd, Land Rover Range Rover, Lincoln Navigator 2wd, Mercury Mountaineer 4wd, Nissan
Altima, Nissan Maxima, Nissan Pathfinder 4wd, Pontiac Grand Prix, Subaru Forester Awd,
Subaru Impreza Awd, Toyota 4runner 4wd, Toyota Camry, Toyota Camry Solara, Toyota
Corolla, Toyota Land Cruiser Wagon 4wd, Toyota Toyota Tacoma 4wd, Volkswagen Gti,
Volkswagen Jetta, Volkswagen New Beetle, and Volkswagen Passat. This data was collected
from the EPA fuel economy website, http://fueleconomy.gov.

This dataset suggests many interesting questions. How are engine size and fuel economy
related? Has fuel economy improved in the last ten years? We will try to answer the first
question and in the process learn more detail about how the scatterplot is created.

3.3 Building a scatterplot

Consider Figure 3.3, one attempt to answer this question. It is a scatterplot of two
continuous variables, with points coloured by a third variable. From your experience in
the previous chapter, you should have a pretty good feel for how to create this plot with
qplot(). But what is going on underneath the surface? How does ggplot2 draw this plot?

Mapping aesthetics to data

What is a scatterplot? You have seen many before and have probably even drawn some by
hand. A scatterplot represents each observation as a point (•), positioned according the
value of two variables. As well as a horizontal and vertical position, each point also has
a size, a colour and a shape. These attributes are called called aesthetics, and are the
properties that can perceived on the graphic. Each aesthetic can be mapped to a variable,
or set to a constant value. In Figure 3.3 x-position is mapped to displ, y-position to hwy and
colour to cyl. Size and shape are not mapped to variables, but remain at their (constant)
default values.

Once we have these mappings we can create a new dataset that records this information.
Table 3.2 shows the first 10 rows of the data behind Figure 3.3. This new dataset encapsulates
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Figure 3.1: A scatterplot of engine displacement in litres (displ) vs average highway miles per
gallon (hwy). Points are coloured according to number of cylinders. This plot summarises the most
important factor governing fuel economy: engine size

the combination of the original data and the aesthetic mappings. We can create many
different types of plots using this data. The scatterplot uses points, but we were instead to
draw lines we would get a line plot. If we used bars, we’d get a bar plot. Neither of those
examples make sense for this data, but we could still draw them, as in Figure 3.3. Much
like in English, using ggplot2 it is still possible to produce grammatically valid plots that
don’t make any sense.

x y colour

1.8 29 4
1.8 29 4
2.0 31 4
2.0 30 4
2.8 26 6
2.8 26 6
3.1 27 6
1.8 26 4
1.8 25 4
2.0 28 4

Table 3.2: First 10 rows from mpg rearranged into format for scatterplot. This is all the information
we need to draw the scatterplot.

Bars, lines and points are all examples of geometric objects, or geoms. Geoms determine
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Figure 3.2: Instead of using points to represent the data, we could use other geoms like, left, lines or,
right, bars. Neither of these geoms make much sense for this data, but they are still valid graphics.

Named plot Geom Other features

scatterplot point
bubblechart point size mapped to a variable
barchart bar
box and whiskers plot boxplot
line chart line

Table 3.3: A selection of named plots and the geoms that they correspond to.

the “type” of the plot. Plots that use a single geom are often given a special name, a few
of which are listed in Table 3.3. More complex plots with combinations of multiple geoms
don’t have a special name, and we have to describe them by hand. For example, Figure 3.3
overlays a per group regression line on the existing plot. What would you call this plot?
Once you’ve mastered the grammar, I think you’ll find that most of the plots that you
produce are uniquely tailored to your problems and will no longer have common names.

Scaling

The values in Table 3.2 have no meaning to the computer. We need to convert them from
data units (e.g. litres, miles per gallon and number of cylinders) to physical units (e.g. pixels
and colours) that the computer can display. This conversion process is called scaling and
performed by (surprise!) scales. Appendix ?? describes the way that specifies values for
colours, sizes, shapes and so on.

For scales that control the horizontal and vertical position, we need an additional step
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Figure 3.3: More complicated plots don’t have their own names. This plot takes Figure 3.3 and
adds a regression line to each group. What would you call this plot?

which determines how the two positions (x and y) combine to form the final position on the
plot. This is done by the coordinate system, or coord. In most cases this will be Cartesian
coordinates, but it might by polar coordinates, or a spherical projection used for a map.

Scaling position is easy in this example because we are using the default linear scales and
Cartesian coordinate system. We only need a linear mapping from the range of the data to
[0, 1]. We use [0, 1] instead of exact pixels because the drawing system that ggplot2 uses,
grid, takes care of that final conversion.

The process for mapping the colour is a little more complicated, as we have a non-numeric
result: colours. However, colours can be parameterised numerically, typically with three
values. For discrete values, the default colour scale maps the to evenly spaced hues on a
colour wheel, as shown in Figure 3.4.

The result of these conversions is Table 3.4, which contains values that have meaning to
the computer. As well as the variables from the aesthetic mapping, we have also included
the default values for the geom. We need these so that the aesthetics for each point are
completely specified.

Finally, we need to render this data to create the graphical objects that are displayed
on the screen. To create a complete plot we need to combine graphical objects from three
sources: data, represented by the point geom; scales and coordinate system, which generate
axes and legends so that we can read values from the graph; and plot annotations, such
as the background and plot title. Figure 3.5 removes the contribution of the data to show
what elements the scales and plot contribute.
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3 Mastering the grammar
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Figure 3.4: A colour wheel showing how the default colour scheme for discrete values is produced.

Figure 3.5: Contributions from the scales, the axes and legend and grid lines, and the plot background.
Contributions from the data, the point geom, has been removed.
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3.4 A more complicated plot

x y colour size shape

0.037 0.531 #FF6C91 1 20
0.037 0.531 #FF6C91 1 20
0.074 0.594 #FF6C91 1 20
0.074 0.562 #FF6C91 1 20
0.222 0.438 #00C1A9 1 20
0.222 0.438 #00C1A9 1 20
0.278 0.469 #00C1A9 1 20
0.037 0.438 #FF6C91 1 20
0.037 0.406 #FF6C91 1 20
0.074 0.500 #FF6C91 1 20

Table 3.4: Simple dataset with variables mapped into aesthetic space. Default values for other
aesthetics are also included: the points will be filled circles (shape 20 in R) with a 1mm diameter.

3.4 A more complicated plot

With a simple example under our belts, it’s now turn to look at the slightly more complicated
plot in Figure 3.4. This plot adds three new components to the mix: facets, multiple layers
and statistics. The facets and layers expand the data structure a little: each panel in
each layer has its own dataset. Think of this like a 3d array of data frames. The smooth
stat adds an addition step in the above process: after mapping the data to aesthetics, the
relationship between the x and y variables is summarised with a flexible model. Other use
statistical transformations include binning, for the histogram, and ...
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Figure 3.6: A more complex plot with facets and multiple layers.
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3 Mastering the grammar

Faceting splits the original dataset into a dataset for each subset, so the data that
underlies Figure 3.4 looks like Table 3.5.

x y colour

a 2 4 red
a 1 1 red
b 4 15 blue
b 9 80 blue

Table 3.5: Simple dataset faceted into subsets.

The first steps of plot creation proceed as before, but new steps are necessary when
we get to the scales. Scaling actually occurs in three parts: transforming, training and
mapping.

• Scale transformation occurs before statistical transformation so that statistics are
computed on the scale-transformed data. This ensures that a plot of log(x) vs log(y)
on linear scales looks the same as x vs y on log scales. See Section ?? for more
details. Transformation is only necessary for non-linear scales, because all statistics
are location-scale invariant.

• After the statistics are computed, each scale is trained on every faceted dataset (a
plot can contain multiple datasets, e.g. raw data and predictions from a model).
The training operation combines the ranges of the individual datasets to get the
range of the complete data. If scales were applied locally, comparisons would only be
meaningful within a facet. This is shown in Table ??.

• Finally the scales map the data values into aesthetic values. This gives Table ?? which
is essentially identical to Table 3.2 apart from the structure of the datasets. Given
that we end up with an essentially identical structure you might wonder why we don’t
simply split up the final result. There are several reasons for this. It makes writing
statistical transformation functions easier, as they only need to operate on a single
facet of data, and some need to operate on a single subset, for example, calculating a
percentage. Also, in practice we may have a more complicated training scheme for
the position scales so that different columns or rows can have different x and y scales.

3.5 Components of the layered grammar

In the examples above, we have seen some of the components that make up a plot:

• data and aesthetic mappings,

• geometric objects,

• statistical transformations,

• scales,
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3.5 Components of the layered grammar

• and facet specification.

And have also touched on the coordinate system. Together, the data, mappings, statistical
transformation and geometric object form a layer. A plot may have multiple layers, as in
the example, where we overlaid a smoothed line on scatterplot. To be precise, the layered
grammar defines the components of a plot as:

• A default dataset and set of mappings from variables to aesthetics.

• One or more layers, each composed of a geometric object, a statistical transformation,
and a position adjustment, and optionally, a dataset and aesthetic mappings.

• One scale for each aesthetic mapping used.

• A coordinate system.

• The facet specification.

The layer component is particularly important as it determines the physical representation
of the data, with the combination of stat and geom defining many familiar named graphics:
the scatterplot, histogram, contourplot, and so. In practice, many plots have (at least)
three layers: the data, context for the data, and a statistical summary of the data. For
example, to visualise a spatial point process, we might display the points themselves, a
map giving some context to the locations of points, and contours of a 2d density estimate.

This grammar is useful for both the user and the developer of statistical graphics. For
the user, it makes it easier to iteratively update a plot, changing a single feature at a
time. The grammar is also useful because it suggests the high level aspects of a plot that
can be changed, giving us a framework to think about graphics, and hopefully shortening
the distance from mind to paper. It also encourages the use of graphics customised to a
particular problem, rather than relying on generic named graphics.

For the developer, it makes it much easier to add new capabilities. You only need to add
the one component that you need, and continue to use the all the other existing components.
For example, you can add a new statistical transformation, and continue to use the existing
scales and geoms. It is also useful for discovering new types of graphics, as the grammar
effectively defines the parameter space of statistical graphics.

3.5.1 Layers

Layers are responsible for creating the objects that we perceive on the plot. A layer is
composed of four parts:

• data and aesthetic mapping,

• a statistical transformation (stat),

• a geometric object (geom)

• and a position adjustment.

These parts are described in detail below.
Usually all the layers on a plot have something in common, which is typically that they

are different views of the same data, e.g. a scatterplot with overlaid smoother.
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3 Mastering the grammar

Data and mapping

Data is obviously a critical part of the plot, but it is important to remember that it is
independent from the other components: we can construct a graphic that can be applied to
multiple datasets. Data is what turns an abstract graphic into a concrete graphic.

Along with the data, we need a specification of which variables are mapped to which
aesthetics. For example, we might map weight to x position, height to y position and age
to size. The details of the mapping are described by the scales, Section 3.5.2. Choosing a
good mapping is crucial for generating a useful graphic, as described in Section ??.

Statistical transformation

A statistical transformation, or stat, transforms the data, typically by summarising it in
some manner. For example, a useful stat is the smoother, which calculates the mean of
y, conditional on x, subject to some restriction that ensures smoothness. Table 3.6 lists
some of the stats available in ggplot2. To make sense in a graphic context a stat must be
location-scale invariant: f(x + a) = f(x) + a and f(b · x) = b · f(x). This ensures that the
transformation is invariant under translation and scaling, which are common operations on
a graphic.

A stat takes a dataset as input and returns a dataset as output, and so a stat can add new
variables to the original dataset. It is possible to map aesthetics to these new variables. For
example, one way to describe a histogram is as a binning of a continuous variable, plotted
with bars whose height is proportional to the number of points in each bin, as described in
Section ??. Another useful example is mapping the size of the lines in a contour plot to
the height of the contour.

The actual statistical method used by a stat is conditional on the coordinate system. For
example, a smoother in polar coordinates should use circular regression, and in 3d should
return a 2d surface rather than a 1d curve. However, many statistical operations have not
been derived for non-Cartesian coordinates and we so we generally fall back to Cartesian
coordinates for calculation, which, while not strictly correct, will normally be a fairly close
approximation.

Geometric object

Geometric objects, or geoms for short, control the type of plot that you create. For
example, using a point geom will create a scatterplot, while using a line geom will create a
line plot. We can classify geoms by their dimensionality:

• 0d: point, text

• 1d: path, line (ordered path)

• 2d: polygon, interval

Geometric objects are an abstract component and can be rendered in different ways.
Figure 3.7 illustrates four possible renderings of the interval geom.

Geoms are mostly general purpose, but do require certain outputs from a statistic. For
example, the boxplot geom requires the position of the upper and lower fences, upper and
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3.5 Components of the layered grammar

Name Description
bin Divide continuous range into bins, and count number of points in each
boxplot Compute statistics necessary for boxplot
contour Calculate contour lines
density Compute 1d density estimate
identity Identity transformation, f(x) = x
jitter Jitter values by adding small random value
qq Calculate values for quantile-quantile plot
quantile Quantile regression
smooth Smoothed conditional mean of y given x
summary Aggregate values of y for given x
sortx Sort values in order of ascending x
unique Remove duplicated observations

Table 3.6: Some statistical transformations provided by ggplot2. The user is able to supplement
this list in a straight forward manner.

Figure 3.7: Four representations of an interval geom. From left to right: as a bar, as a line, as a
error bar, and (for continuous x) as a ribbon.

lower hinges, the middle bar and the outliers. Any statistic used with the boxplot needs to
provide these values.

Every geom has a default statistic, and every statistic a default geom. For example, the
bin statistic defaults to using the bar geom to produce a histogram. Over-riding these
defaults will still produce valid plots, but they may violate graphical conventions.

Each geom can only display certain aesthetics. For example, a point geom has position,
colour, and size aesthetics. A bar geom has all those, plus height, width and fill colour. Dif-
ferent parameterisations may be useful. For example, instead of location and dimension, we
could parameterise the bar with locations representing the four corners. Parameterisations
which involve dimension (e.g. height and width) only make sense for Cartesian coordinate
systems. For example, height of a bar geom in polar coordinates corresponds to radius of a
segment. For this reason location based parameterisations are used internally.

Position adjustment

Sometimes we need to tweak the position of the geometric elements on the plot, when
otherwise they would obscure each other. This is most common in bar plots, where we stack
or dodge (place side-by-side) the bar to avoid overlaps. In scatterplots with few unique x
and y values, we sometimes randomly jitter (Chambers et al., 1983) the points to reduce
overplotting.
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3 Mastering the grammar

3.5.2 Scales

A scale controls the mapping from data to aesthetic attributes, and so we need one scale
for each aesthetic property used in a layer. Scales are common across layers to ensure a
consistent mapping from data to aesthetics. Some scales are illustrated in Figure 3.8.

Figure 3.8: Examples of four scales from ggplot2. From left to right: continuous variable mapped
to size and colour, discrete variable mapped to shape and colour. The ordering of scales seems
upside-down, but this matches the labelling of the y-axis: small values occur at the bottom.

A scale is a function, and its inverse, along with a set of parameters. For example, the
colour gradient scale maps a segment of the real line to a path through a colour space. The
parameters of the function define whether the path is linear or curved, which colour space
to use (eg. LUV or RGB), and the start and end colours.

The inverse function is used to draw a guide so that you can read values from the graph.
Guides are either axes (for position scales) or legends (for everything else). Most mappings
have a unique inverse (i.eṫhe mapping function is one-to-one), but many do not. A unique
inverse makes it possible to recover the original data, but this is not always desirable if we
want to focus attention on a single aspect.

Scales typically map from a single variable to a single aesthetic, but there are exceptions.
For example, we can map one variable to hue and another to saturation, to create a single
aesthetic, colour. We can also create redundant mappings, mapping the same variable to
multiple aesthetics. This is particularly useful when producing a graphic that works in
both colour and black and white.

3.5.3 Coordinate system

A coordinate system, coord for short, maps the position of objects onto the plane of the
plot. Position is often specified by two coordinates (x, y), but could be any number of
coordinates. The Cartesian coordinate system is the most common coordinate system
for two dimensions, while polar coordinates and various map projections are used less
frequently. For higher dimensions, we have parallel coordinates (a projective geometry),
mosaic plots (a hierarchical coordinate system) and linear projections onto the plane.

Coordinate systems affect all position variables simultaneously and differ from scales
in that they also change the appearance of the geometric objects. For example, in polar
coordinates, bar geoms look like segments of a circle. Additionally, scaling is performed
before statistical transformation, while coordinate transformations occur afterward. The
consequences of this are shown in Section ??.

Coordinate systems control how the axes and grid lines are drawn. Figure 3.9 illustrates
three different types of coordinate systems. Very little advice is available for drawing these
for non-Cartesian coordinate systems, so a lot of work needs to be done to produce polished
output.

3.5.4 Faceting

There is also another thing that turns out to be sufficiently useful that we should include
it in our general framework: faceting (also known as conditioned or trellis plots). This
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Figure 3.9: Examples of axes and grid lines for three coordinate systems: Cartesian, semi-log
and polar. The polar coordinate system illustrates the difficulties associated with non-Cartesian
coordinates: it is hard to draw the axes correctly!

makes it easy to create small multiples of different subsets of an entire dataset. This is a
powerful tool when investigating whether patterns hold across all conditions. The faceting
specification describes which variables should be used to split up the data, and how they
should be arranged in a grid.

3.6 Data structures

These principles are encoded as data structures in a fairly straightforward way.
There are two ways to create these plot objects: all at once with qplot(), as shown in

the previous chapter, or piece-by-piece with ggplot() and layer functions, as described in
the next chapter.

Regardless of how you make the plot, you will always end up with a plot object. This
can be saved or displayed.

One thing to note is that all ggplot2 objects (with the exception of the main plot object)
are proto objects. Proto is a package which implements the prototype-style of object-
oriented programming. There are some major differences between this and the typical S3
or S4 style of OO in R, but the good news is that you only need to worry about them if
you want to develop your own extensions to ggplot2. For everyday use, the proto objects
are hidden behind a facade which makes them act like normal R objects.
str to see full structure (it can be large!)
summary briefly describes the structure of the plot
recreate to see (one way) to recreate the plot with code
Data stored inside the plot - if you change the data outside of the plot, and then redraw

a saved plot, it will not be updated. Consequence of R copying semantics.
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Chapter 4

Build a plot layer by layer

4.1 Introduction

Layering is the mechanism by which additional elements are added to a plot. Each added
element can come from a different dataset and have a different aesthetic mapping, allowing
us to create plots that could not be generated using qplot(), which permits only a single
dataset and a single aesthetic mapping.

Section 4.2 tells you how to initialize a plot object. The plot object is not yet ready to be
displayed until at least one layer is added, as as described in Section 4.3. Sections 4.4 and
4.5 describe the data and aesthetic mappings in more detail, including more information
about how layer settings override the plot defaults, the difference between setting values
and mapping aesthetics, and the important group aesthetic. Sections 4.6 and 4.7 list the
geoms and stats available in ggplot2. Section 4.8 concludes by introducing you to some
plotting techniques that take advantage of what you have learned in this chapter.

This chapter is mainly a technical description of how layers, geoms and statistics work
- how you call and customise them. The next chapter, the ggplot2 “toolbox”, describes
how you can use different geoms and stats to do data analysis. These two chapters are
companions, with this one explaining how layers work and the next one how you can use
layers to achieve your graphical goals.

4.2 Creating a plot

To build up a plot layer by layer, we start by creating a plot object. When discussing
qplot(), we didn’t note that it creates a plot object, but it does. It creates a plot object,
adds layers, and shows the result, applying a lot of default values along the way. To initialise
a plot object without any shortcuts, simply call ggplot() with no arguments; assign the
result to a variable in order to add to it afterward. ggplot accepts two optional arguments:
data and aesthetic mapping. The data argument needs little explanation: It’s the data
frame that you want to visualise. You are already familiar with aesthetic mappings from
qplot(), and the syntax here is quite similar, although you need to wrap the pairs of
aesthetic attribute and variable name in an aes():

p <- ggplot(mtcars, aes(x = wt, y = mpg, colour = cyl))

These arguments set up defaults for the plot and can be omitted if you specify data and
aesthetics when adding each layer.
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4 Build a plot layer by layer

This initial plot object can not be rendered until we add at least one layer.

4.3 Layers

A minimal layer may do nothing more than specify a geom, a way of visually representing
the data. The plot object we just initialized can be rendered after this addition, specifying
a scatterplot:

p <- p + layer(geom = ‘‘point’’)

layer(geom = "point", stat = "identity", position = "identity")

Note the use of + to add the layer to the plot. This layer uses the plot defaults for data
and aesthetic mapping and it uses default values for two optional arguments: the statistical
transformation (the stat) and the position adjustment. (Position adjustments are described
in detail in Chapter ??; in brief, they shift objects on the plot to avoid overplotting.) A
more fully specified layer can take any or all of these arguments:

layer(geom, geom params, stat, stat params, data, mapping, position)

This more complicated layer calls for a histogram in “steelblue” and a bin width of 2:

p <- ggplot(mtcars, aes(x = mpg))
p <- p + layer(
geom = ‘‘histogram’’,
geom params = list(fill = "steelblue"),
stat = ‘‘bin’’,
stat params = list(binwidth = 2)

)
p

This layer specification is precise but verbose. We can simplify it by using shortcuts that
rely on the fact that every geom is associated with a default statistic and position, and
every statistic with a default geom. This means that you only need to specify one of stat
or geom to get a completely specified layer, with parameters passed on to the geom or stat
as appropriate. This expression generates the same layer as the full layer command above:

geom histogram(binwidth = 2, fill = "steelblue")

All the shortcut functions have the same basic form, beginning with geom or stat :

geom XXX(mapping, data, ..., geom, position)
stat XXX(mapping, data, ..., stat, position)

Their common parameters define the components of the layer:

• mapping (optional): A set of aesthetic mappings, specified using the aes() function
and combined with the plot defaults as described in Section 4.5.
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4.3 Layers

• data (optional): A data set which overrides the default plot data set. It is most
commonly omitted, in which case the layer will use the default plot data.

• ...: Parameters for the geom or stat, such as bin width in the histogram or bandwidth
for a loess smoother. Any aesthetic that the geom recognises can also be specified as
a parameter to the layer. See Section 4.5.2.

• geom or stat (optional): You can override the default stat for a geom, or the default
geom for a stat. This is a text string containing the name of the geom to use. Using
the default will give you a standard plot; overriding the defaults allows you to achieve
something more exotic, as described in Section 4.8.1.

Simple layers can be used with qplot(), without the option of changing the data or
aesthetic mapping:

qplot(mtcars, aes(mpg, wt)) + geom point()
qplot(mtcars, aes(mpg, wt, colour = factor(cyl))) + geom smooth()

You’ve seen that plot objects can be stored as variables. The summary function can be
helpful for inspecting the structure of a plot without plotting it:

> p <- ggplot(data=mtcars, aes(mpg, wt))
> summary(p)
Title:
-----------------------------------
Data: mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb [32x11]
Mapping: x=mpg, y=wt
Scales: x,y -> x,y
Faceting: facet grid(. ~ ., FALSE)
>
> p <- p + geom point()
> summary(p)
Title:
-----------------------------------
Data: mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb [32x11]
Mapping: x=mpg, y=wt
Scales: x,y -> x,y
Faceting: facet grid(. ~ ., FALSE)
-----------------------------------
mapping:
geom point:
stat identity:
position identity: ()

Layers can also be stored as variables, so that it is easy to write clean code that generates
a family of related plots. For example, a set of plots can be initialised using different data
then enhanced identically with carefully constructed layers.
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4 Build a plot layer by layer

Note that the order of data and mapping arguments is switched between ggplot() and
the layer functions. This should improve ease of use, because you almost always specify
data for the plot, and almost always specify aesthetics – but not data – for the layers.
However, I suggest explicitly naming other arguments rather than relying on positional
matching. This makes the code more readable and it is the style followed in this book.

The following sections describe the data and aesthetic mappings in more detail, then go
on to describe the available geoms and stats.

4.4 Data

The restriction on the data is simple: It must be a data frame. It is not necessary to specify
a default dataset except when using faceting; faceting is a global operation (i.e., it works
on all layers) and it needs to have some a dataset to add in any missing columns. See
Section ?? for more details. If the dataset is omitted, every layer must supply its own data.

It is important to remember that the data is stored in the plot object as a copy, not a
reference. This is important because ggplot2 objects are entirely self-contained. You can
save one to disk and later plot it without needing anything else from that session.

If you want to update (or change) the data later on, you can replace the default dataset
with %+%:

p <- ggplot(mtcars, aes(mpg, wt, colour = cyl)) + geom point()
p
mtcars <- transform(mtcars, mpg = mpg ^ 2)
p %+% mtcars

Any change of values or dimensions is legitimate as long as the variables used in the plot
are still part of the data, and the variable do not change from discrete to continuous or vice
versa. This facility can be useful if you need to produce the same plot for different datasets.
It’s also an easy way to experiment with influential points or imputation schemes.

4.5 Aesthetic mapping

To describe the way that variables in the data are mapped to things that we can perceive
on the plot (the “aesthetics”), we use the aes function. The aes function takes a list of
aesthetic-variable pairs like these:

aes(x = weight, y = height, colour = age)

Here we are mapping x-position to weight, y-position to height and colour to age. The
first two arguments can be left without names, in which case they are assumed to correspond
to the x and y variables. (This matches the way that qplot() is normally used.)

aes(weight, height, colour = sqrt(age))

Note that functions of variables can be used.
Any variable in an aes() specification must be contained inside the plot or layer data.

This is one of the ways in which ggplot2 objects are guaranteed to be entirely self-contained,
so that they can be stored and re-used.
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4.5 Aesthetic mapping

4.5.1 Plots and layers

When the aesthetic mappings are part of the plot defaults, they can be set when the plot is
initialized or added later using +, as in this example:

> p <- ggplot(mtcars)
> summary(p)
Title:
-----------------------------------
Data: mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb [32x11]
Faceting: facet grid(. ~ ., FALSE)
>
> p <- p + aes(wt, hp)
> summary(p)
Title:
-----------------------------------
Data: mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb [32x11]
Mapping: x=wt, y=hp
Faceting: facet grid(. ~ ., FALSE)

We have seen several examples of using the default mapping when adding a layer to a
plot:

> p <- ggplot(mtcars, aes(x = mpg, y = wt))
> p + geom point()
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As these two examples show, the default mappings in the plot p just defined can be
extended or overridden in added layers:

> p + geom point(aes(colour = factor(cyl)))
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> p + geom point(aes(y = disp))
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The rules are summarised in Table 4.1. Note that you are overriding the aesthetics only in
that layer. Unless you specify otherwise, the axis and legend names, as well as mappings in
subsequent layers, will use the default assignments.

4.5.2 Setting vs. mapping

For every aesthetic the geom function understands, you can also set that aesthetic as an
parameter to the function. Aesthetics can vary for each observation being plotted, while
parameters can not. For example, the following layer sets a parameter but not an aesthetic
mapping:

p <- ggplot(mtcars, aes(x=mpg, y=wt))
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4.5 Aesthetic mapping

Operation Layer aesthetics Result

Add colour = cyl x = mpg, y = wt, colour = cyl
Override y = disp x = mpg, y = disp
Delete y = NULL x = mpg

Table 4.1: Rules for combining layer aesthetic mapping with default mapping of
aes(x = mpg, y= wt): additional aesthetics can be added, overridden, and removed.

p + geom point(colour="darkblue")

will set the point colour to be dark blue instead of black. This is quite different to:

p + geom point(aes(colour="darkblue"))

This maps (not sets) the colour to the value “darkblue”. This effectively creates a new
variable containing only the value “darkblue” and then maps colour to that new variable.
Because this value is discrete, the default colour scale uses evenly spaced colours on the
colour wheel, and since there is only one value this colour is reddish.

When the string refers to a variable, it does what we’ve already described. In this case,
it doesn’t correspond to a variable in the dataset but a constant, so the color scale uses its
default highlighting color. For the default color scale, that’s the pinkish color you see in
figure blah.

Chapter A describes how values should be specified for the various aesthetics. With qplot,
you can do the same thing by putting the value inside of I(), e.g., colour = I("darkblue").
The difference between setting and mapping is illustrated in Figure 4.5.2.

4.5.3 Grouping

The group aesthetic partitions the the data set into discrete components. It is designed to
be used with data comprised of multiple groups of linked records, especially longitudinal
data; for example, a medical experiment in which measurements were taken on each subject
at more than one time point. The group is used by the line geom to determine which
observations to connect, by the boxplot geom to determine which points to summarise in
each box, and by the smooth geom to determine which group of points should be included
in the smooth. When one or more discrete variables are used in the plot, the default group
aesthetic is their combination (formed by interaction()); this often partitions the data
correctly. When it does not, or when no discrete variable is used in the plot, the group
needs to be explicitly defined. There are three common cases where this occurs, and we
will consider each one separately in the following examples.

In these examples, we will use a simple longitudinal data set, Oxboys from the nlme
package. It records the heights (height) and ages (age) of 26 boys (Subject), measured on
nine occasions (Occasion).

Multiple groups, one aesthetic: In many situations, you want to separate your data
into groups but render them with the same aesthetic. This is common in longitudinal
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Figure 4.1: The difference between Left, setting colour to "darkblue" and Right, mapping colour
to "darkblue". When "darkblue" is mapped to colour, it is treated as a regular value and scaled
with the default colour scale. This results in pinkish points and a legend.

studies with many subjects. When looking at the data in aggregate you want to be able to
distinguish individual subjects, but you don’t need to identify them.

The first plot in Figure 4.5.3 shows a set of time series plots, one for each boy. It was
generated generated as follows:

p <- ggplot(Oxboys, aes(x=age, y=height)) +
geom line(aes(group=Subject))

p

We specified the Subject as the grouping variable to create a partition for each boy. The
second plot in Figure 4.5.3 shows the result of omitting the group; plots with an incorrect
group aesthetic often look something like this.

Different groupings in the same plot: Sometimes we want to plot summaries based
on different levels of aggregation of the data. Here, different layers might have different
grouping aesthetics, so that some display the full data while others display summaries of
larger groups.

Building on the current example, suppose we want to add a single smooth line to the plot
just created, based on the ages and heights of all the boys. If we use the same grouping for
the smooth that we used for the line, we get the first plot in Figure 4.5.3.

p + geom smooth(aes(group=Subject), method="lm")

This is not what we wanted; we have inadvertently added a smoothed line for each boy.
This new layer needs a different group aesthetic, so that the new smoothed line will be
based on all the data, as shown in the second plot in the figure:
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Figure 4.2: Left, Correctly specifying group = Subject produces one line per subject. Right, This
pattern is characteristic of an incorrect grouping aesthetic.

p + geom smooth(aes(group=1), method="lm")
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Figure 4.3: Adding smooths to the Oxboys data. Left, Using the same grouping as the lines results
in a line of best fit for each boy. Right, Using aes(group = 1) in the smooth layer fits a single line
of best fit across all boys.

Note because the first plot was stored in the variable p, we could experiment with the
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4 Build a plot layer by layer

code to generate the added layer without having to re-enter any of the code for the first
layer.

Using the default group aesthetic: In this case, the plot has a discrete scale but
you want to draw lines that connect across groups. This is the strategy used in interaction
plots, profile plots, and parallel coordinate plots, among others.

We start with boxplots of height at each occasion of measurement, as shown in the first
figure in Figure 4.5.3, created this way:

ggplot(Oxboys, aes(x=Occasion, y=height)) + geom boxplot()

There is no need to specify the group aesthetic here; the default grouping works here
because occasion is a discrete variable. To overlay individual trajectories we again need to
override the default grouping for that layer with aes(group = Subject), as shown in the
second plot in the figure.

p <- ggplot(Oxboys, aes(x=Occasion, y=height)) +
geom boxplot()
p + geom line(aes(group=Subject), colour="#3366FF")

There’s another difference in the second plot. The boxplots are drawn in thick blue lines
so that they will still be visible once the line segments for each subject have been added.
Note that the color and size in the boxplots in the second plots are settings rather than
mappings, as discussed earlier in this chapter. They are rendering attributes, but they have
no correspondance to variables in the data.
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Figure 4.4: Left, if boxplots are used to look at the distribution of heights at each occasion (a
discrete variable), the default grouping works correctly. Right, if trajectories of individual boys are
overlaid with geom line() then aes(group = Subject) must be set for the new layer.

The interaction() function is particularly useful if there isn’t a pre-existing variable
that separates the groups you are interested in, but a combination of variables does.
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4.6 Geoms

4.5.4 Matching aesthetics to graphic objects

In ggplot2, geoms can be roughly divided into individual and collective geoms. An individual
geom has a distinctive graphical object for each row in the data frame. For example, the
point geom has a single point for each . On the other, collective geoms represent multiple
observations. This maybe a result of a statistical summary, or may be fundamental to
the display of the geom, as with polygons. Lines and paths fall somewhere in between -
each overall line is composed of a set of straight segments, but each segment represents
two points (compare this with geom_segment where each segment represents a single row).
What happens when the aesthetic attributes of the points are different?

For individual geoms, this isn’t a problem at the drawing level, but still may be a problem
at the perceptual level - overplotting means that you can’t distinguish between individual
points and in some sense the point geom becomes a collective geom.

For lines and paths, operates on an off by one principle. Blending too complicated in
general (how would you blend from green dotted lines to red dashed lines?). Rules for
colour and line type (due to technical limitations in R).

For all other collective geoms, all aesthetic attributes must be the same, or the default
value will be used. This makes sense for fill as it is a property of the entire object - it
doesn’t make sense to think about having a different fill for each point on the border.

There is of course also an interaction with grouping. This results in an intuitive display
for bars and area plots because stacking the individual bars or areas results in the same
shape as the original data.

4.6 Geoms

Geoms, or geometric elements, perform the actual rendering of the plot. Geoms are also
responsible for drawing legends, as explained in Section ??. Table 4.2 lists all of the geoms
available in ggplot.

4.7 Stat

Statistical transformations, stats, summarise the data in some way. All available stats are
listed in Table 4.3.

Each stat generates a number of output variables that can be used in aesthetic mappings.
For example, stat_bin, the statistic used to make histograms, produces the following
variables:

• count, the number of observations in each bin

• density, the density of observations in each bin (percentage of total / bar width)

• x, the centre of the bin

These generated variables can be used instead of the variables present in the original
data set. For example, the default histogram geom assigns the height of the bars to the
number of observations (count), but if you’d prefer a more traditional histogram, you can
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4 Build a plot layer by layer

Name Description

abline Line, specified by slope and intercept
area Area plots
bar Bars, rectangles with bases on y-axis
blank Blank, draws nothing
boxplot Box and whiskers plot
contour Display contours of a 3d surface in 2d
crossbar Hollow bar with middle indicated by horizontal

line
density Display a smooth density estimate
density 2d Contours from a 2d density estimate
errorbar Error bars
histogram Histogram
hline Line, horizontal
interval Base for all interval (range) geoms
jitter Points, jittered to reduce overplotting
line Connect observations, in ordered by x value
linerange An interval represented by a vertical line
path Connect observations, in original order
point Points, as for a scatterplot
pointrange An interval represented by a vertical line, with

a point in the middle
polygon Polygon, a filled path
quantile Add quantile lines from a quantile regression
ribbon Ribbons, y range with continuous x values
rug Marginal rug plots
segment Single line segments
smooth Add a smoothed condition mean.
step Connect observations by stairs
text Textual annotations
tile Tile plot as densely as possible, assuming that

every tile is the same size.
vline Line, vertical

Table 4.2: Geoms in ggplot2

50



4.7 Stat

Name Description

bin Bin data
boxplot Calculate components of box and whisker plot
contour Contours of 3d data
density Density estimation, 1D
density 2d Density estimation, 2D
function Superimpose a function
identity Don’t transform data
qq Calculation for quantile-quantile plot
quantile Continuous quantiles
smooth Add a smoother
spoke Convert angle and radius to xend and yend
step Create stair steps
sum Sum unique values. Useful for overplotting on

scatterplots
summary Summarise y values at every unique x
unique Remove duplicates

Table 4.3: Stats in ggplot2

use the density (density). The following example shows a density histogram of carat from
the diamonds dataset.

> ggplot(diamonds, aes(x=carat)) + geom histogram(aes(y=..density..), binwidth=.1)
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The names of generated variables must be surrounded with .. when used. This prevents
confusion in case the original data set includes a variable with the same name as a generated
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4 Build a plot layer by layer

variable, and it makes it clear to any later reader of the code that this variable was generated
by a stat.

As a reminder, the same plot can be produced using qplot because it does not include
any layer which changes the default aesthetic mappings:

qplot(carat, ..density.., data = diamonds, geom="histogram", binwidth = .1)

4.8 Pulling it all together

Once you have become comfortable with combining layers, you will be able to create
graphics that are both intricate and useful. The following examples demonstrate some of
the ways to use the capabilities of layers that have been introduced in this chapter. These
are just to get you started – you are limited only by your imagination!

4.8.1 Combining geoms and stats

By connecting geoms with different statistics, you can easily create new graphics. Figure 4.8.1
shows three variations on a histogram. They all use the same statistical transformation
underlying a histogram (the bin stat), but use different geoms to display the results: the
area geom, the point geom and the tile geom.

d <- ggplot(diamonds, aes(x=carat)) + xlim(0, 3)
d + stat bin(aes(ymax = ..count..), binwidth = 0.1, geom = "area")
d + stat bin(
aes(size = ..density..), binwidth = 0.1,
geom = "point", position="identity"

)
d + stat bin(
aes(y = 1, fill = ..count..), binwidth = 0.1,
geom = "tile", position="identity"

)

(The use of xlim in ggplot will be discussed in 5, in the presentation of the use of scales
and axes, but any R user can already guess that it is used here to fix the limits of the
horizontal axis.)

A number of the geoms available in ggplot were derived from other geoms in a process
like the one just described, by starting with an existing geom and making a few changes in
the default aesthetics or stat. For example, the jitter geom is simply the point geom with
the default position reset from NULL to jitter. Once it becomes clear that a particular
variant is going to be used a lot or used in a very different context, it makes sense to create
a new geom. Table 4.4 lists these “aliased” geoms.

4.8.2 Varying aesthetics and data

One of the more powerful capabilities of ggplot2 is the ability to plot different data sets
on different layers. This may seem strange: Why would you want to plot different data on
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4.8 Pulling it all together
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Figure 4.5: Three variations on the histogram. Left, a frequency polygon; middle, a scatterplot with
both size and height mapped to frequency; right, an heatmap representing frequency with colour.

Aliased geom Base geom Changes in default

area ribbon aes(min = 0, max = y), position = "stack"
density area stat = "density"
histogram bar stat = "bin"
jitter point position = "jitter"
quantile line stat = "quantile"
smooth ribbon stat = "smooth"

Table 4.4: Geoms that were created by modifying the defaults of another geom.

the same plot? In practice, you often have related data sets that should be shown together.
A very common example is supplementing the data with predictions from a model. While
the smooth geom can add a wide range of different smooths to your plot, it is no substitute
for a external quantitative model that summarises your understanding of the data.

Let’s look again at the Oxboys dataset which used in Section 4.5.3. In Figure 4.5.3, we
showed linear fits for individual boys (left) and for the whole group (right). Neither model
is particularly appropriate: The group model ignores the within–subject correlation and
the individual model doesn’t use information about the typical growth pattern to more
accurately predict individuals. In practice we might use a linear mixed effects model to do
better. This section explores how we can combine the output from this more sophisticated
model with the original data to gain more insight into both the data and the model.

First we’ll load the nlme package, and fit a model with varying intercepts and slopes.
(Exploring the fit of individual models shows that this is a reasonable first pass.) We’ll also
create a plot to use as a template. This regenerates the first plot in Figure 4.5.2, but we’re
not going to render it in its default state.

> require(nlme, quiet = TRUE, warn.conflicts = FALSE)
> model <- lme(height ~ age, data = Oxboys, random = ~ 1 + age | Subject)
> oplot <- ggplot(data=Oxboys, aes(x=age, y=height, group=Subject)) +
+ geom line()
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4 Build a plot layer by layer

Next we’ll compare the predicted trajectories to the actual trajectories. We do this by
building up a grid that contains all combinations of ages and subjects. This is overkill for
this simple linear case, where we only need two values of age to draw the predicted straight
line, but we show it here because it is necessary when the model is more complex. Next we
add the predictions from the model back into this dataset, as a variable called height.

> age grid <- seq(-1, 1, length = 10)
> subjects <- unique(Oxboys$Subject)
>
> preds <- expand.grid(age = age grid, Subject = subjects)
> preds$height <- predict(model, preds)

Once we have the predictions we can display them along with the original data. Because
we have used the same variable names as the original Oxboys dataset, and we want the
same group aesthetic, we don’t need to specify any aesthetics; we only need to override the
default dataset. We also set two aesthetic parameters to make it a bit easier to compare
the predictions to the actual values.

> oplot + geom line(data = preds, colour = "#3366FF", size= 0.4)
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It seems that the model does a good job of capturing the high-level structure of the
data, but it’s hard to see the details – plots of longitudinal data are often called spaghetti
plots, and with good reason. Another way to compare the model to the data is to look
at residuals, so let’s do that. We add the predictions from the model to the original data
(fitted), calculate residuals (resid), and add the residuals as well. The next plot is a little
more complicated: We update the plot dataset (recall the use of %+% to update the default
data), change the default y aesthetic to resid, and add a smooth line for all observations.

> Oxboys$fitted <- predict(model)
> Oxboys$resid <- with(Oxboys, fitted - height)
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4.8 Pulling it all together

>
> oplot %+% Oxboys + aes(y = resid) + geom smooth(aes(group=1))
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The smooth line makes it evident that the residuals are not random, showing a deficiency
in the model. We add a quadratic term, refit the model, recalculate predictions and
residuals, and replot. There now much less evidence of model inadequacy.

> model2 <- update(model, height ~ age + I(age ^ 2))
> Oxboys$fitted2 <- predict(model2)
> Oxboys$resid2 <- with(Oxboys, fitted2 - height)
>
> oplot %+% Oxboys + aes(y = resid2) + geom smooth(aes(group=1))

age

he
ig

ht

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

Notice how easily we were able to modify the plot object. We updated the data and
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4 Build a plot layer by layer

replotted twice without needing to reinitialize oplot. Layering in ggplot is designed to work
well with the iterative nature of fitting and evaluating models.
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Chapter 5

Scales, axes and legends

5.1 Introduction

Scales control the mapping from data to aesthetics. Each scale is a function from a region
in data space (the domain) to a region in aesthetic space (the range). The domain, as we
already know, can be continuous or discrete, ordered or unordered. The range consists
of concrete aesthetics that you can perceive and that R can understand, such as position,
colour, shape, size, and line type.

If you blinked when you read that scales map data both to position and colour, you are
not alone. The notion that the same kind of object is used to map data to positions and
symbols strikes some people as unintuitive. However, you will see the logic and power of
this notion as you read further in the chapter.

For each scale there is also a guide which allows the viewer to perform the inverse
mapping, from aesthetic space to data space. For position aesthetics, the axes are the
guides; for all other aesthetics, the legends do that job.

When a scale (and guide) are needed, ggplot automatically adds them using default
values, so you can generate quite a lot of plots without knowing how scales work. However,
understanding scales and learning how to manipulate them gives you much more control
over your plots.

This chapter covers:

• How scales work, § 5.2.

• Using scales: their names, arguments and roles, § 5.3.

• More details about individual scales, § 5.4.

• Controlling the appearance of axes and legends, § 5.5.

5.2 How scales work

To describe how scales work, we will first describe the domain (the data space) and the
range (the aesthetic space), and then outline the process by which one is mapped to the
other.

Since an input variable is either discrete or continuous, the domain is either a set of
values (stored as a factor, character vector, or logical vector) or an interval on the real
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line (stored as a numeric vector of length 2). For example, in the mammals sleep dataset,
the domain of the discrete variable vore is {carni, herbi, omni}, and the domain of the
continuous variable bodywt is [0.005, 6654].

The range can also be discrete or continuous. For discrete scales, it is a vector of aesthetic
values corresponding to the input values. For continuous scales, it is a 1d path through
some more complicated space. For example, the continuous colour scales have a range
which is a path through colour space.

The range is either specified by the user when the scale is created, or by the scale itself.
The process of mapping the domain to the range often includes the following stages:

• transformation: For continuous variables, it is often useful to display a transforma-
tion of the data, such as a logarithm or square root. This ensures that a plot of log(x)
vs log(y) on linear scales looks the same as x vs y on log scales. Transformations are
described in more depth in Section ??.

After any transformations have been applied, the statistical summaries for each layer
are computed based on the transformed data.

• training: During this key stage, the domain is learned. Sometimes learning the
domain of a scale is extremely straightforward: In a plot with only one layer, rep-
resenting only raw data, it may consist simply of determining the minimum and
maximum values of a continuous variable (after transformation), or listing the unique
levels of a categorical variable. However, sometimes the domain must reflect multiple
layers. For example, imagine a scale that will be used to create an axis; the minimum
and maxiumum values of the raw data in the first layer and the statistical summary
in the second layer are likely to be different, but they must all eventually be drawn
on the same plot.

The domain can also be specified directly, overriding the training process, by manually
setting the domain of the scale with the limits argument, as described in Section 5.3.
Any data values outside of the domain of the scale will be set to NA.

• mapping: The global domain has now been determined, and we already knew the
range before we started this process. The last thing to do, then, is to apply the
scaling function that maps data values to aesthetic values. Nothing needs to be done
for some scales: For example, for continuous position scales, all the difficult work has
already been done by the transformation step.

We have left a few stages out of this description of the process for simplicity. For example,
we haven’t discussed the role facetting plays in training, and we have also ignored position
adjustments.

5.3 Constructing and using scales

Every aesthetic has a default scale that is added to the plot whenever you use that aesthetic
in a layer. These are listed in Table 5.1.

To add a different scale or to modify some features of the default scale, create a scale
object and add it to a plot (using +). All scale constructors have a common naming
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5.3 Constructing and using scales

Aesthetic Discrete Continuous

Colour and fill hue gradient
Position discrete continuous
Shape shape —
Line type linetype —
Size discrete size

Table 5.1: Default scales, by aesthetic and variable type. The default scale varies depending on
whether the variable is continuous or discrete. Shape and line type do not not have a default
continuous scale; size does not have a default discrete scale.

scheme. They start with scale_, followed by the name of the aesthetic (e.g., colour_,
shape_, or x_), and finally by the name of the scale (e.g., gradient, hue, or discrete).
For example, the name of the default scale for the colour aesthetic based on discrete
data is scale colour hue(), and the name of the Brewer colour scale for filled points is
scale fill brewer().

1
The following example shows the difference between the default discrete and continuous

scales for colour, as well as how to override the default scale; this is the code used to
generate the plots:

p <- qplot(sleep total, sleep cycle, data=msleep, colour=vore)
p
p + scale colour discrete("What does\nit eat?",

breaks = rev(c("herbi", "carni", "omni", NA)),
labels = rev(c("plants", "meat", "both", "don’t know")))

p + scale colour brewer(pal="Set1")
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Figure 5.1: Differences between default discrete and continuous colour scales

The default colour scale for discrete values uses equally spaced hues, the default scale
for continuous values uses a gradient of colours between blue and yellow, and there are
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a number of Brewer colour scales designed to work well in a variety of situations (see
http://colorbrewer.org for more detail).

As well as referring to scales explicitly by name, you can also refer to the default
scales with the shorthand scale name discrete or continuous. For example, the de-
fault discrete colour scale is scale_colour_discrete. You can change the default scales
with set_default_scale(aesthetic, variable_type, scale_name, ...). Extra argu-
ments are passed to the scale constructor. For example, if you wanted to set up default
black and white colour scales you could execute:

set default scale("colour", "discrete", "grey")
set default scale("colour", "continous", "gradient",
low = "white", high = "black"
)

As well as having a common naming scheme, all scales share a set of common arguments.
These arguments control the basic operation of the scale and are described below.

• name: sets the label which will appear on the axis or legend. You can supply text
strings (using “\n” for line breaks) or mathematical expressions (as described by
?plotmath). The plots in the following figure are produced using this code:

p <- qplot(tip, total bill, data=tips, colour=tip/total bill)
p + scale colour gradient("Tip rate")
p + scale colour gradient("The amount of the tip\ndivided by the total bill")
p + scale colour gradient(expression(frac(tip, total bill)))

Because scale colour gradient() is the default scale for the colour aesthetic and
continuous data, the only variation we see in the the plots is the different labels on
the legends – and the resulting change in the plot’s aspect ratio, in the case of the
middle plot.
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Figure 5.2: Legends with names given by (from left to right): "Tip rate", "The amount of
the tip\ndivided by the total bill" and expression(frac(tip, total bill)

60

http://colorbrewer.org


5.3 Constructing and using scales

• limits: fixes the domain of the scale. Continuous scales take a numeric vector of
length two; discrete scales take a character vector. If limits are set, no training of the
data will be performed.

There are shortcut functions for setting the limits of continuous x and y scales: xlim()
and ylim(). Each has two arguments specifying the endpoints of the new domain,
and each creates a scale object.

This is particularly useful for zooming (i.e., setting limits that are smaller than the
full range of data), and for ensuring that limits are consistent across multiple plots
intended to be compared (i.e., setting limits that are larger or smaller than some of
the default ranges).

Any value not in the domain of the scale is not displayed; i.e., for an observation to
be displayed it must be in the domain of every scale on the plot.

• breaks and labels: breaks controls which values appear on the axis or legend
– e.g., at what values tick marks should appear on an axis or how a continuous scale
is segmented in a legend. bf labels specifies the values that should appear at the
breakpoints. (If labels is set, you must also specify breaks, so that the two can be
matched up correctly.)

To distinguish breaks from limits, remember that breaks affect what appears on
the guides, while limits affect what appears on the plot. See by Figure 5.3 for an
illustration. The first plot uses the default settings for both breaks and limits, which
happen to be limits = c(4, 8) and breaks = 4:8. In the second plot, the breaks have
been reset: The plotted region is the same, but the tick positions and labels have
shifted. In the third plot, it is the limits which have been redefined, so much of the
data now falls outside the plotting region.

Figure 5.3: The difference between breaks and limits. (Left) default plot
limits = c(4, 8), breaks = 4:8. (Middle) breaks = c(5.5,6.5) and (right) limits =
c(5.5,6.5).

This code generates the plots in the figure:

p <- qplot(cyl, wt, data=mtcars)
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5 Scales, axes and legends

p
p + scale x continuous(breaks=c(5.5, 6.5))
p + scale x continuous(limits=c(5.5, 6.5))

5.4 More details

Scales can be divided roughly into four separate groups:

• Continuous position scales, used to map continuous variables onto the plotting region
and to construct the corresponding axes.

• Colour gradients, used to map continuous variables to points or sub-regions in the
plotting area and to construct the corresponding legends. For example, colour
gradients are used in rendering density surfaces.

• Discrete scales, used to map discrete variables to symbol size, shape or colour, and to
create the corresponding legend.

• The identity scale, used to plot variable values directly to the aesthetic rather than
mapping them. For example, if the variable you want to map to symbol colour is
itself a vector of colours, you want to plot those values rather than mapping them to
some other colour scale.

This section describes each type in more detail. Precise details about individual scales can
be found in the documentation, which can be used either within R (e.g. ?scale brewer),
or online at http://had.co.nz/ggplot2. The advantage of the online documentation is
that you can see all the example plots, and navigate between pages more easily.

5.4.1 Continuous position scales

The most common continuous position scales are scale x continuous and scale y continuous,
which map data to the x and y axis. The most interesting variations are produced using
transformations. Every continuous scale takes a trans argument, allowing the specification
of a variety of transformations, both linear and non-linear. The transformation is carried
out by a “transformer,” which describes the transformation, its inverse, and how to draw
the labels. Table 5.2 lists some of the more common transformers.

Transformations are most often used to modify position scales, so there are shortcuts for x,
y, and z scales: scale_x_log10() is equivalent to scale_x_continuous(trans = "log10").

Of course, you can also perform the transformation yourself. For example instead of
adding scale x log, you could plot log(x). That produces an identical result inside the
plotting region, but the the axis and tick labels won’t be the same. If you use a transformed
scale, the axes will be labelled in the original data space. In both cases, the transformation
occurs before the statistical summary. Figure 5.4 illustrates this difference, and these
commands produce the two plots in the figure:

qplot(carat, price, data=diamonds) + scale x log10() + scale y log10()
qplot(log10(carat), log10(price), data=diamonds)
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5.4 More details

Name Function f(x) Inverse f−1(x)

asn tanh−1(x) tanh(x)
exp ex log(x)
identity x x
log log(x) ex

log10 log10(x) 10x

log2 log2(x) 2x

logit log( x
1−x) 1

1+e(x)

pow10 10x log10(x)
probit Φ(x) Φ−1(x)
recip x−1 x−1

reverse −x −x

sqrt x1/2 x2

Table 5.2: List of built-in transformers.

Figure 5.4: A scatterplot of diamond price vs. carat illustrating the difference between log
transforming the scale (left) and log transforming the data (right). The plots are identical, but the
axis labels are different.
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5 Scales, axes and legends

Transformers are also used in coord_trans, where the transformation occurs after the
statistic has been calculated, and affect the shape of the grob. coord_trans is described in
more detail in Section XXX.

The trans argument works for any continuous scale, including the colour gradients
described below, but the shortcuts only exist for position scales.

5.4.2 Colour gradients

There are three types of colour gradients available. A two–colour gradient, a three–colour
gradient and a custom n–colour gradient. This section introduces you to a little bit of theory
how these gradients work and shows you how to create your own for specific purposes.

Colour gradients are often used to show the height of a 2d surface. In the following
example we’ll use the surface of a 2d density estimate of the faithful dataset (Azzalini
and Bowman, 1990), which records the waiting time between eruptions and during of each
eruption for the Old Faithful geyser in Yellowstone Park.

Figure 5.5 shows three gradients applied to this data.

Figure 5.5: Density of eruptions with three colour schemes. (Left) default gradient colour scheme,
(mid) customised gradient from white to black and (right) 3 point gradient with midpoint set to the
median density.

You can also create your own custom gradient with scale_colour_custom(). This is
useful if you have colours that are meaningful for your data (e.g. black body colours or
standard terrain colours), or you’d like to use a palette produced by another package.
Figure 5.6 shows show palettes generates from routines in the vcd package. The technical
report Zeileis et al. (2007) that describes the philosophy behind these palettes is a good
introduction to some of the complexities of creating good colour scales.

5.4.3 Discrete scales

The discrete scales, scale_linetype(), scale_shape() and scale_size_discrete() ba-
sically have no options (although for the shape scale you can choose whether points should
be fixed or solid). If you want to customise these scales, you need to create your own new
scale with the manual scale. It has one important argument, values in which you specify
the values that the scale should produce. If this vector is named, it will match the values
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5.5 Legends and axes

Figure 5.6: Gradient colour scales using perceptually well-formed palettes produced by the vcd
package. From left to right: sequential, diverging and heat hcl palettes.

of the output to the values of the input, otherwise it will match in order of the levels of the
discrete variable.

This scale is particularly useful if you’d like to override the default shape, size or linetype
scales. You will need some knowledge of the valid aesthetic values, which are described in
Appendix A.

5.4.4 The identity scale

The identity scale is used when your data is already in a form that the plotting functions
in R understand, i.e. when the data and aesthetic spaces are the same. This means there is
no way to derive a meaningful legend from the data alone, and by default a legend is not
drawn. However, you can still use the breaks and labels arguments to set up a legend
yourself.

Figure 5.7 shows one sort of data where scale_identity is useful. Here the data
themselves are colours, and there’s no way we could make a meaningful legend. The identity
scale can also be useful in the case where you have manually scaled the data to aesthetic
values. In that situation, you will have to figure out what breaks and labels make sense for
your data.

5.5 Legends and axes

Collectively, axes and legends are called guides, and they are like the inverse of the scale:
they allow you to read observations from the plot and map them back to their original
values. Figure 5.8 labels the guides and their components. There are natural equivalents
between the legend and the axis: legend name and axis label; legend keys and tick labels.

In ggplot2, legends and axes are produced automatically based on the scales and geoms
that you used in the plot. This requires collecting information about how each aesthetic is
used. We use the domain of the scale for the aesthetic to determine the value of the legend
keys; we use a list of the geoms that use the aesthetic to determine how to draw the keys.
For example, the point geom has points in the legend key and the lines geom has lines. If
both points and lines are used then both will be drawn.
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5 Scales, axes and legends

Figure 5.7: A plot of R colours in Luv space. A legend is unnecessary, because the colour of the
points represents itself: the data and aesthetic spaces are the same.
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Figure 5.8: The components of the axes and legend.
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5.5 Legends and axes

ggplot2 tries to use the smallest possible number of legends that accurately conveys
the scales used in the plot. It does this by combining legends for the same variable with
different aesthetics. Figure 5.9 shows an example of this.

Figure 5.9: Colour legend, shape legend, colour + shape legend.

5.5.1 Customising appearance

It is possible to customize both the contents of the legends and the way they are rendered
using the following arguments and options.

• The breaks and labels arguments to the scale function, introduced earlier in this
chapter, are particularly important because they control what tick marks appear on
the axis and what keys appear on the legend. If the breaks chosen by default are not
appropriate (or you want to use more informative labels) setting these arguments will
adjust the appearance of the legend keys and axis tick marks.

• The theme settings axis.box, axis.title, axis.ticks, legend.box, legend.title,
and legend.keys control the visual appearance of axes and legends. For more details
on how to manipulate these settings, see Section ??.

• The internal grid lines are controlled by the breaks and minor breaks arguments. By
default minor grid lines are spaced evenly in the original data space - this gives the
common behaviour of log-log plots where major grid lines are multiplicative and minor
grid lines are additive. You can override the minor grid lines with the minor breaks
argument.

• Position and justification of legends. Plot level option setting: legend.position,
can be right, left, top, bottom, none (no legend), or a numeric position. The
numeric position gives (in npc coordinates) the position of the corner given by
legend.justification.

• Position scales also have the expand argument, which controls the amount of extra
space added to axis limits. This is a numeric vector of length two: the first number
is a multiplicative amount and the second is an additive constant. The default for
continuous scales is c(0.05, 0) (i.e., add 5% extra space on each end); for discrete
scales it is c(0, 0.75)). Set to c(0, 0) to eliminate extra space.
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5 Scales, axes and legends

5.6 More resources

As you experiment with different aesthetic choices and new scales, it’s important to keep in
mind how the plot will be perceived. Some particularly good references to consult are:

• Cleveland (1993a, 1985); Cleveland and McGill (1987) for research on how plots are
perceived and the best ways to encode data.

• Tufte (1990, 1997, 2001, 2006) for how to make beautiful, data-rich, graphics.

• Brewer (1994a,b) for how to colours that work well in a wide variety of situations,
particularly for area plots.

• Carr (1994, 2002); Carr and Sun (1999), for the use of colour in general.
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Chapter 6

Polishing your plots for publication

In this chapter you will learn how to prepare polished plots for publication. Most of this
chapter focusses on the theming capability of ggplot2 which allows you to control many
non-data aspects of plot appearance, but you will also learn how to adjust geom, stat and
scale defaults, and the best way to save plots for inclusion into other software packages.
Together with the next chapter, manipulating plot rendering with grid, you will learn how
to control every visual aspect of the plot to get exactly the appearance that you want.

The visual appearance of the plot is determined by both data and non-data related
components. Section 6.1 introduces the theme system which controls all aspects of non-data
display.

By now you should be familiar with the many ways that you can alter the data related
components of the plot—layers and scales—to visualise your data and change the appearance
of the plot. In Section 6.2 you will learn how you can change the defaults for these, so that
you do not need to repeat the same parameters again and again.

Finally, Section 6.3 concludes the chapter with a discussion about how to get your
graphics out of R and into LATEX, Word or other presentation or word-processing software.

6.1 Themes

The appearance of non-data elements of the plot are controlled by the theme system. They
do not affect how the data is rendered by geoms, or how it is transformed by scales. Themes
don’t change the perceptual properties of the plot, but they do help you customise the plot
to be aesthetically pleasing or match existing style guides. Themes give you control over
the things like the fonts in all parts of the plot: the title, axis labels, axis tick labels, strips,
legend labels and legend key labels; and the colour of ticks, grid lines, and backgrounds
(panel, plot, strip and legend).

This separation into data and non-data components is quite different from base and lattice
graphics. In base and lattice graphics, most functions take a very large number arguments
that specify the finer points of appearance, which can make the functions complicated
and hard to understand. ggplot2 takes a different approach: when creating the plot you
determine how the data is display, then after it has been created you can edit every detail of
the rendering, using the theming system. Figure 6.1 shows some of the effects of changing
the theme of a plot. The two examples show the two themes included by default in ggplot2.
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Figure 6.1: The effect of changing themes. Left, the default grey theme with grey background and
white gridlines. Right, the alternative black and white theme with white background and grey
gridlines. Notice how the bars, data elements, are identical in both plots.

Like many other areas of ggplot2, themes can be controlled on multiple levels from the
very coarse to the very fine:

• Use a built-in theme. This affects every element of the plot in a visually consistent
manner. The default theme uses a grey panel background with white gridlines, while
the alternative theme uses a white background with grey gridlines. § 6.1.1.

• Modify a single element of a built-in themes. Each theme is made up of multiple
elements The theme system comes with a number of built-in element rendering
functions with a limited set of parameters. By adjusting these parameters you can
control things like text size and colour, background and grid line colours and text
orientation. By combining multiple elements you can create your own theme.

• Write a custom element function with grid. This allows you to absolutely customise
the appearance of every element - you are not restricted to a fixed set of drawing
options. § 6.1.2

• Use grid to alter a single item on the plot. Using grid, the underlying drawing system,
gives you the ability to alter any element drawn on the plot. However, it comes
at a cost of requiring a much deeper understand of how the plot is drawn. This is
described in Chapter 7.

Generally each of these theme settings can be applied globally, to all plots, or locally to a
single plot. How to do this is described individually for each section.

6.1.1 Built-in themes

There are two built-in themes. The default, theme_gray(), uses a very light grey background
with white gridlines. This follows from the advice of Tufte (1990, 1997, 2001, 2006) and
Brewer (1994a); Carr (1994, 2002); Carr and Sun (1999). We can still see the gridlines to
aid in the judgement of position (Cleveland, 1993b), but they have little visual impact and
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6.1 Themes

we can easily “tune” them out. The grey background gives the plot a similar colour (in a
typographical sense) to the remainder of the text, ensuring that the graphics fit in with
the flow of a text without jumping out with a bright white background. Finally, the grey
background creates a continuous field of colour which ensures that the plot is perceived as
a single visual entity.

The other built-in theme, theme_bw(), has a more traditional white background with
dark grey grid lines. Figure 6.1 show some of the difference between these themes.

Both themes have a single parameter, base_size, which controls the base font size. The
base font size is the size that the axis titles use: the plot title is 20% bigger, and the tick
and strip labels are 20% smaller. If you want to control these sizes separately, you’ll need
to modify the individual elements as described in the following section.

You can apply themes in two ways:

• Globally, affecting all plots when they are drawn: set_theme(theme_grey()) or
set_theme(theme_bw()). theme_set() returns the previous theme so that you can
restore it later if you want.

• Locally, for an individual plot: qplot(...) + theme_grey(). A locally applied
theme will override the global default.

The following example shows a few of these combinations:

> histogram <- qplot(rating, data=movies, geom="histogram", binwidth=1)
> previous theme <- theme set(theme bw())
>
> # Themes affect the plot when they are drawn, not when they are created
> histogram
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>
> # Override the theme for a single plot by adding it on
> histogram + theme bw(30)
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>
> # Apply the original theme to a single plot
> histogram + previous theme
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>
> # Permanently restore the original theme
> theme set(previous theme)

6.1.2 Theme elements

A theme is made up of multiple elements which control the appearance of a single item on
the plot, as listed in Table 6.1. The appearance of each element is controlled an element
function. There are four main types of elements: segments and lines, rectangles, and text.
Each of these elements has parameters that you can tune, as described in Section ??, or
you can write your own, as described in Section 7.4.

There are three elements that have individual x and y settings: axis.text, axis.title
and strip.text. Having a different setting for the horizontal and vertical elements allows
you to control how text should appear in different orientations.

6.1.3 Element functions

There are four basic types of built-in element functions: text, lines and segments, rectangles
and blank. Each element function has a set of parameters that control the appearance as
described below:
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6.1 Themes

Theme element Type Description

axis.line segment Line along axis
axis.text.x text x axis label
axis.text.y text y axis label
axis.ticks segment axis tick marks
axis.ticks.y segment axis tick marks
axis.title.x text horizontal tick labels
axis.title.y text vertical tick labels

legend.background rect background of legend
legend.key rect background underneath legend keys
legend.text text legend labels
legend.title text legend name

panel.background rect
panel.border rect
panel.grid.major line major grid lines
panel.grid.minor line minor grid lines

panel.empty rect panel with no data
plot.background rect background of the entire plot
plot.title text plot title

strip.background rect
strip.text.x text text for horizontal strips
strip.text.y text text for vertical strips

Table 6.1: Theme elements

• theme_text() draws labels and headings. You can control the font family, face,
colour, size, hjust, vjust, angle, and lineheight.

• theme_line() and theme_segment() draw lines and segments with the same options
but in a slightly different way. Make sure you match the appropriate type or you
will get strange grid errors. For these element functions you can control the colour,
size, and linetype.

• theme_rect() draws rectangles, mostly used for backgrounds, you can control the
fill, colour, size, and linetype.

• theme_blank draws nothing. Use this element type if you don’t want anything drawn,
or any space allocated for that element.

You can see the settings for the current theme with theme_get(). I haven’t included
the output here because it takes up several pages. (Debby: do you think I should include
it regardless? In an appendix?). You can modify the elements locally for a single plot
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6 Polishing your plots for publication

with opts(), or globally for all future plots with theme_update(). The following examples
shows how you can use these functions. It’s a good idea to look at an existing theme for
details about setting the correct angles and justifications for text elements.

> (p <- qplot(cut, data=diamonds, geom="bar"))
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> p + opts(axis.text.x = theme text(angle = 45, hjust=1))
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> old theme <- theme update(
+ plot.background = theme rect(fill = "#3366FF"),
+ panel.background = theme rect(fill = "#003DF5"),
+ axis.text.x = theme text(colour = "#CCFF33"),
+ axis.text.y = theme text(colour = "#CCFF33", hjust = 1),
+ axis.title.x = theme text(colour = "#CCFF33", face = "bold"),
+ axis.title.y = theme text(colour = "#CCFF33", face = "bold", angle = 90)
+ )
> p
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> theme set(old theme)

There is some duplication in this example because we have to specify the x and y elements
separately. This is a necessary evil so that you can have total control over the appearance
of the elements.

In the following example we use theme_blank() to progressively suppress the appearance
of elements we’re not interested in. Notice how the plot automatically reclaims the space
previously used by these elements - if you don’t want this to happen (perhaps because they
need to line up with other plots on the page), use colour = NA, fill = NA as parameter
to create invisible elements that still take up space.

> p

cut

co
un

t

0

5000

10000

15000

20000

Fair Good Very GoodPremium Ideal

> last plot() + opts(panel.grid.minor = theme blank())
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> last plot() + opts(panel.grid.major = theme blank())
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> last plot() + opts(panel.background = theme blank())
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> last plot() + opts(axis.title.x = theme blank())
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> last plot() + opts(axis.title.y = theme blank())
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> last plot() + opts(axis.line = theme segment())
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6.1.4 More advanced control

You can also write your own custom element functions. You’ll need to know more about
grid to do this, so this is described in Section 7.4.

6.2 Customising scales and geoms

When producing a consistent theme, you may also want to tune some of the scale and geom
defaults. Rather than having to manually specify the changes every time you add the scale
or geom, you can use the following functions to alter the default settings for scales and
geoms.

6.2.1 Scales

To change the default scale associated with an aesthetic, use set_default_scale(). (See
Table 5.1 for the defaults.) This function takes three arguments: the name of the aesthetic,
the type of variable (discrete or continuous) and the name of the scale to use as the default.
Further arguments override the default parameters of the scale. The following example sets
up colour and fill scales for black and white printing:

> set default scale("colour", "discrete", "grey")
> set default scale("fill", "discrete", "grey")
> set default scale("colour", "continuous", "gradient",
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6 Polishing your plots for publication

Aesthetic Default value Geoms

colour #3366FF contour, density2d, quantile, smooth
colour NA area, bar, histogram, polygon, rect, tile
colour black abline, crossbar, density, errorbar, hline, line,

linerange, path, pointrange, rug, segment, step, text,
vline

colour darkblue jitter, point
colour grey60 boxplot, ribbon
fill NA crossbar, density, jitter, point, pointrange
fill grey60 area, bar, histogram, polygon, rect, ribbon, smooth, tile
linetype 1 abline, area, bar, contour, crossbar, density, density2d,

errorbar, histogram, hline, line, linerange, path,
pointrange, polygon, quantile, rect, ribbon, rug,
segment, smooth, step, tile, vline

shape 19 jitter, point, pointrange
size 0.5 abline, area, bar, boxplot, contour, crossbar, density,

density2d, errorbar, histogram, hline, line, linerange,
path, pointrange, polygon, quantile, rect, ribbon, rug,
segment, smooth, step, vline

size 2 jitter, point
weight 1 bar, boxplot, contour, density, density2d, histogram,

quantile, smooth

Table 6.2: Default aesthetic values for geoms. See Chapter A for how the values are interpreted by
R.

+ low = "white", high = "black")
> set default scale("fill", "continuous", "gradient",
+ low = "white", high = "black")

6.2.2 Geoms and stats

You can customise geoms and stats in a similar way with update_geom_defaults() and
update_stat_defaults(). Unlike the other theme settings these will only affect plots
created after the setting has been changed, not all plots drawn after the setting has been
changed. The following example demonstrates changing the default point colour and
changing the default histogram to a density (“true”) histogram.

Table 6.2 lists all of the common aesthetic defaults. If you change one, it’s a good idea to
change all the other that you use to ensure that your plots look consistent. See Chapter A
for how the values are interpreted by R.

> update geom defaults("point", aes(colour = "darkblue"))
> qplot(mpg, wt, data=mtcars)
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> # update stat defaults("bin", aes(y = ..density..), binwidth = 1)
> qplot(rating, data=movies, geom="histogram", binwidth=1)
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6.3 Saving your output

For interactive use, ggsave(), will use the size of the current graphics device (useful for
ensuring a good aspect ratio), but when creating final versions it’s recommended to set
width and height so that all graphics for a document are the same size.

You have two basic choices of output: raster or vector. Vector graphics are procedural: .
This means that they are essentially “infinitely” zoomable - there is no loss of detail. Raster
graphics are stored as an array of pixels. Fixed resolution. Generally, vector output is more
desirable, but for complex graphics containing thousands of graphical objects it can be
slow to render. In this case, it may be better to switch to raster output. For printed use, a
high-resolution (e.g. 600 dpi) graphic may be an acceptable compromise, but can be large.

Table 6.3 lists recommended graphic formats for various tasks. R output generally works
best as part of a *nix development tool chain: using png or pdf output in LATEXdocuments.
With Microsoft Office things are little more complicated. You have two choices of vector
output neither of which are perfect. The first option is to use Windows meta files (wmf),
which are supported natively by Office but do not support transparency. pdfs do support
transparency, but when included into a Office do not.

If you are using LATEX, I recommend including \DeclareGraphicsExtensions{.png, .pdf}
in the preamble. Then you don’t need to specify the file extension in includegraphics
commands, but LATEXwill pick png files in preference to pdf. I choose this order because
you can produce all your files in pdf, and then go back and re-render any big ones as pngs.
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6 Polishing your plots for publication

Figure 6.2: The difference between raster, left, and vector, right, graphics.

Graphics device Type Recommended for

pdf vector pdflatex
ps vector latex
wmf vector MS office
png raster web, pdflatex
tiff raster some publishers

Table 6.3: Recommended graphic output for different purposes.
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Chapter 7

Manipulating plot rendering with grid

7.1 Introduction

What is grid? It’s the graphics engine that powers ggplot. It is responsible for drawing the
graphic object onto the screen or saving it to a graphics file. It provides a system of viewports,
which define regions on the plot, and a comprehensive set of units for describing size and
position. This chapter can not hope to provide a comprehensive introduction to grid, but
should hopefully provide enough examples to get you going. I highly recommend the book
“R Graphics” (Murrell, 2005b), by the author of grid, as a companion to this chapter. If you
can’t get the book, at least read Chapter 5, “The grid graphics model”, which is available
online for free at http://www.stat.auckland.ac.nz/~paul/RGraphics/chapter5.pdf.

The grobs (graphical objects) used in this chapter are a bit different to the geoms
(geometric objects) used in previous chapters. A grob is the object that is actually drawn
onto the screen, while a geom is a more abstract object which describes the type of object
used to draw a plot. An example may make this more clear. In a line plot, the geom
describes that the data should be visualised with a line, and the grobs draw the line itself,
as well as the other lines that appear in the grid and axes.

The chapter begins with a discussion of the structure of viewports (§ 7.2) and grobs
(§ 7.3) used by ggplot2, and then continues to describe the four principle ways to enhance
a plot with grid:

• Custom element functions

• Edit existing objects on the plot, § 7.5.

• Add annotations to the plot, § 7.7.

• Removing grobs from a plot, § 7.6.

• Arrange multiple plots on a single page, § 7.8.

7.2 Plot viewports

Viewports define the basic regions of the plot. The structure will vary slightly from plot to
plot, depending on the type of faceting used, but the basics will remain the same.
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7 Manipulating plot rendering with grid

The panels viewport contains the meat of the plot: strip labels, axes and faceted panels.
The viewports are named according to both their job and their position on the plot. A
prefix (listed below) describes the contents of the viewport, and is followed by integer x and
y position (counting from bottom left) separated by “ ”. Figure 7.1 illustrates this naming
scheme for a 2×2 plot.

• strip h: horizontal strip labels

• strip v: vertical strip labels

• axis h: horizontal axes

• axis v: vertical axes

• panel: faceting panels

panel_1_1 panel_2_1

panel_2_2panel_2_1

strip_h_1_1 strip_h_2_1

axis_h_1_1 axis_h_2_1

strip_h_1_1

strip_v_1_1
strip_v_1_2

ax
is_

v_
2_
1

ax
is_

v_
1_
1

Figure 7.1: Naming scheming of the panel viewports

The panels viewport is contained inside the background viewport which also contains
the following viewports:

• title, xlabel, and ylabel: for the plot title, and x and y axis labels

• legend_box: for all of the legends for the plot

Figure 7.2 labels a plot with a representative sample of these viewports. To get a list of all
viewports on the current plot, run current.vpTree(all=TRUE).
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Figure 7.2: Diagram showing the structure and names of viewports.

7.3 Plot grobs

Grob names have three components: the name of the grob, the class of the grob, and a
unique numeric suffix. The three components are joined together with “.” to give a name
like title.text.435 or ticks.segments.15. These three components ensure that all grob
names are unique, and allow you to select multiple grobs with the same name at the same
time.

You can see a list of all the grobs in the current plot with grid.ls(). If you only want
to see the ggplot name of the grob, grid.ls(only.name=TRUE) will reduce a lot of the
output. Here’s an example after drawing the a simple plot:

plot-surrounds::
background
plot::
background
guide:: (background, major-horizontal, major-vertical,

minor-horizontal, minor-vertical, border)
xaxis::
ticks
labels:: (label, label, label, label, label, label, label, label)
yaxis::
ticks
labels:: (label, label, label, label, label)
geom_point
ylabel
xlabel
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7 Manipulating plot rendering with grid

title

Figure 7.3 labels some of these grobs. The grobs are arranged hierarchically, but it’s
hard to capture this in a diagram.
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Figure 7.3: A selection of the most important grobs. geom_point, major-vertical and label
point to a single element of the grob.

The most important components are:

• The geom displayed in the plot: geom point.

• xaxis and yaxis, the axes, containing labels and ticks.

• Axis labels and title: xlabel, ylabel, title.

• guide, the internal guides within a panel (background, and grid lines)

7.4 Custom element functions

To see how to write custom element functions, it’s good to start by seeing how the built-in
element functions work:

> str(args(theme text()))
function (label, x = 0.5, y = 0.5, ..., vjust = vj, hjust = hj,

default.units = "npc")
> str(args(theme rect()))

84



7.5 Editing existing objects on the plot

Grid parameter ggplot2 aesthetic Description

lwd size Line width (in pts)
col colour Border colour
fill fill Fill colour
fontsize size Font size (in pts)
fontface — Font face (bold, italic, ...)

Table 7.1: Common graphical parameters for grid grobs. Note that point size is controlled separately.

function (x = 0.5, y = 0.5, width = 1, height = 1, ...)
> str(args(theme line()))
function (x = 0:1, y = 0:1, ..., default.units = "npc")

You’ll notice that these are very similar to the arguments to textGrob(), rectGrob()
and polylineGrob() and these are exactly the functions that they are based on. All that
the element function do is set up some defaults.

If you want to write your own, you need to copy this basic idea: take position arguments,
and return a grid grob. For example, let’s say we’d like to give the strips a 3d appearance.
We can do this by drawing a rectangle, and then drawing highlights on the top-right and
low-lights (shadows) on the bottom-left.

7.5 Editing existing objects on the plot

From time to time, the theming system will not give you enough control. This may occur if
you want to modify a single element of a

Where possible, using the theming system will be easier, because using grid will affect a
component, but not the space saved for that element.

Most of the difficulty in modifying elements of the plot is figuring out what the grob you
want to modify is called. Once you have that you can use grid.gedit, to locate and then
modify that grob.

To fully identify a grob, you need to use a gPath. A gPath can either be a string
specifying a single grob name, or a sequence of grob names that describe hierarchy to
travel down to get to the grob of interest with the gPath function. Using a string will
find all grobs with that name regardless of their position in the hierarchy. For example,
"label" will find all grobs called label, regardless of where they are. To be more specific,
using gPath("parent", "child") will only find grobs named “child” with a parent called
“parent”. For example, gPath("xaxis", "label") will locate only labels on the x-axis.

Modifying a grob requires some knowledge of the different parameters of the grob. This
is where the second part of the grob name is useful, as it will tell you whether you are
modifying a line, or a rect or a text grob. You can get more information by looking at
the documentation for that grob, eg. ?grid.rect, ?grid.text, ?grid.lines As well as
individual parameters, all grobs share a common set of graphical parameters described in
Table 7.1. Appendix A describes the values that these may take.

In this example, we edit the font of all labels.
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7 Manipulating plot rendering with grid

qplot(mpg, wt, data=mtcars, facets = . ~ cyl)

grid.gedit("label", gp=gpar(fontsize=14, col="red"))

To edit just one type of label, we need to use the hierarchy of grobs and the gPath
function:

qplot(mpg, wt, data=mtcars, facets = . ~ cyl)
grid.gedit(gPath("strip","label"), gp=gpar(fontface="bold"))

grid.gedit(gPath("yaxis", "labels"), gp=gpar(col="red"))
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7.6 Removing grobs

You can use grid.remove() to completely remove a grob. However, the space it takes up
will remain there:

qplot(mpg, wt, data=mtcars, facets = . ~ cyl)
grid.gremove(gPath("strip", "background"))
grid.gremove(gPath("guide", "background"))
grid.gremove("major")
grid.gremove("axis")

You can use an alternative method to remove top level viewports. There are plot-level
options keep and drop, which specify which viewports to keep or drop respectively. For
example:

p <- qplot(mpg, wt, data=mtcars, main = "My plot")
p + opts(keep = "panel")
p + opts(ignore = c("xlabel", "ylabel"))

7.7 Adding annotations

Many annotations can be done with geom text, geom abline, geom vline and geom hline,
so try those first. If you need more flexibility you can add annotations with grid. When
you add annotations to a plot you need to specify where they will appear. In grid this is
described by a system of viewports. Different viewports describe different regions of output
on the plot, for example, the axes, the plotting region and the faceting strips.

To add annotations to a plot you have to specify the viewport when you add extra grobs.
For example:

qplot(wt, mpg, data=mtcars, colour=cyl)
grid.circle(vp="layout::panel_1_1")

Panel viewports will have a coordinate system set up for points, while x- and y- axes
will only have one dimension defined. For example, on the x-axis there will be native
coordinates for the x-dimension, but not the y-dimension.
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qplot(wt, mpg, data=mtcars, colour=cyl)
grid.lines(x=unit(c(0,1), "npc"), y=unit(23, "native"), vp="layout::panel_1_1")
grid.lines(x=unit(c(0,1), "npc"), y=unit(23, "native"), vp="layout::axis_v_1_1")

7.8 Customising layout

By default, showing a ggplot object at the R command prompt will display to the screen.
To exercise more control, you can call print explicitly. This section describes some of the
things you can do. For more details see ?print.ggplot and ?ggplot print.

If you just want the plot (no labels, titles or legends) you can use pretty = FALSE

p <- qplot(wt, mpg, data=mtcars, colour=cyl)
print(p, pretty = FALSE)

By default, ggplot always clears the screen and draws to the entire device. You customise
this in two ways. One way is to setup a viewport and push it on to the display, then draw
the plot with newpage=FALSE. pushViewport adds the viewport to the list of viewports
on the display. Afterwards, upViewport returns you to the viewport for the entire page,
preparing you for the next set of output.

p <- qplot(wt, mpg, data=mtcars, colour=cyl)
grid.newpage()
pushViewport(viewport(height=0.4, width=0.4, x=0.4, y=0.8))
print(p, newpage=FALSE, pretty=FALSE)
upViewport()

Alternatively, you can set up your own set of viewports, and then specify which one the
plot should be drawn to. Here we use upViewport before displaying the plot so we are in
the top level viewport before we start plotting.

grid.newpage()
pushViewport(viewport(height=0.5, width=0.5, x=0.5, y=0.5, name="small", angle=40))
upViewport()
print(p, vp="small")

Obviously, this is very useful if you want to layout plots in a complicated grid. In
this case, grid.layout is very useful, as it allows you to set up a grid of viewports with
arbitrary heights and widths. You still need to create each viewport, but instead of explicitly
specifying the position and size, you can specify the row and column of the layout.

p <- qplot(wt, mpg, data=mtcars, colour=cyl)

vplayout <- function(x, y) viewport(layout.pos.row=x, layout.pos.col=y)
grid.newpage()
pushViewport(viewport(layout=grid.layout(3,3)))

print(p, vp=vplayout(1,1))
print(p, vp=vplayout(2:3,2:3))
print(p, vp=vplayout(1, 2:3))
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print(p, vp=vplayout(2:3, 1))

This is useful for arranging plots in a wider range of ways than what you can do with
faceting. You should be careful to ensure that scales are consistent over the different
plots. There is currently no easy way to do this, except to keep track of the maximum and
minimum yourself, and then manually set the scales of the plot.

7.9 Saving your work

Using grid.gedit() works fine if you are editing the plot on screen, but if you want to
save it to disk you need take some extra steps, or you will end up with multiple pages
of output, each showing one change. The key is not to modify the plot on screen, but to
modify the plot grob, and then draw it once you have made all the changes.

p <- qplot(wt, mpg, data=mtcars, colour=cyl)
# Get the plot grob

grob <- ggplotGrob(p)
# Modify it place

grob <- geditGrob(grob, gPath("strip","label"), gp=gpar(fontface="bold"))

# Draw it

grid.newpage()
grid.draw(grob)
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Appendix A

Aesthetic specifications

This appendix summarises the various formats that grid drawing functions take. Most of
this information is available scattered throughout the R documentation. This appendix
brings it all together in one place.

A.1 Colour

Colours can be specified with:

• A name, e.g. "red". The colours are displayed in Figure A.1(a), and can be listed in
more detail with colours(). The Stower’s institute provides a nice printable pdf that
lists all colours: http://research.stowers-institute.org/efg/R/Color/Chart/.

• An rgb specification, with a string of the form "#RRGGBB" where each of the pairs
RR, GG, BB consist of two hexadecimal digits giving a value in the range 00 to FF.
Partially transparent can be made with alpha(), e.g. alpha("red", 0.5)

• An NA, for a completely transparent colour.

The functions rgb(), hsv(), hcl() can be used to create colours specified in different
colour spaces.

A.2 Line type

Line types can be specified with:

• A integer or name: 0=blank, 1=solid, 2=dashed, 3=dotted, 4=dotdash, 5=longdash,
6=twodash), illustrated in Figure A.1(b)

• The lengths of on/off stretches of line. This is done with a string of an even number
(up to eight) of hexadecimal digits which give the lengths in consecutive positions in
the string. For example, the string "33" specifies three units on followed by three
off and "3313" specifies three units on followed by three off followed by one on and
finally three off.

The five standard dash-dot line types described above correspond to 44, 13, 134, 73,
and 2262.

Note that NA is not a valid value for lty.
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A.3 Shape

Shapes take four types of values:

• An integer in [0, 25], illustrated in Figure A.1(c).

• A single character, to use that character as a plotting symbol.

• A . to draw the smallest rectangle that is visible (i.e. about one pixel).

• An NA, to draw nothing.

While all symbols have a foreground colour, symbols 19–25 also take a background colour
(fill).

A.4 Size

Throughout ggplot2, for text height, point size and line width, size is specified in millime-
tres.

A.5 Justification

Justification of a string (or legend) defines the location within the string that is placed
at the given position. There are two values for horizontal and vertical justification. The
values can be:

• A string: "left", "right", "centre", "center", "bottom", and "top".

• A number between 0 and 1, giving the position within the string (from bottom-left
corner). These values are demonstrated in Figure A.1(d).

A.6 Fonts

postscriptFonts, pdfFonts, quartzFonts
Find R news article

• face

• family

• lineheight

• fontsize
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A.6 Fonts

(a) All named colours in Luv space (b) Built-in line types

(c) R plotting symbols. Colour is black, and fill is
blue. Symbol 25 (not shown) is symbol 24 rotated
180 degrees.

(d) Horizontal and vertical justification settings.

Figure A.1: Examples illustrating different aesthetic settings.
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