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Abstract—The rapidly growing field of parallel computing systems promotes the study of parallel algo-
rithms, with the Monte Carlo method and asynchronous iterations being among the most valuable
types. These algorithms have a number of advantages. There is no need for a global time in a parallel
system (no need for synchronization), and all computational resources are efficiently loaded (the min-
imum processor idle time). The method of partial synchronization of iterations for systems of equa-
tions was proposed by the authors earlier. In this article, this method is generalized to include the case
of nonlinear equations of the form x = F(x), where x is an unknown column vector of length n, and F is
an operator from ℝn into ℝn. We consider operators that do not satisfy conditions that are sufficient
for the convergence of asynchronous iterations, with simple iterations still converging. In this case, one
can specify such an incidence of the operator and such properties of the parallel system that asynchro-
nous iterations fail to converge. Partial synchronization is one of the effective ways to solve this prob-
lem. An algorithm is proposed that guarantees the convergence of asynchronous iterations and the
Monte Carlo method for the above class of operators. The rate of convergence of the algorithm is esti-
mated. The results can prove useful for solving high-dimensional problems on multiprocessor compu-
tational systems.
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INTRODUCTION
The rapid development of computers makes the problems of synchronization of calculations rather

topical. For many computational systems, it may be advantageous to use algorithms that are slower than
the optimal ones but do not involve any synchronization of computations. In this article, we consider par-
tial-synchronization algorithms for iterations of a wide class of operators. The linear case was considered
by the authors earlier in [1].

1. ASYNCHRONOUS ITERATIONS
Let us consider the problem of finding a fixed point of

(1)
where x = (x1, x2, …, xn)T is a column vector of unknowns and F = (f1(x), f2(x), …, fn(x))T is an operator
from ℝn into ℝn. Since we will consider a sequence of vectors along with their elements, it is convenient
to introduce the following notation. The components of vectors from ℝn will be denoted as xi, i = 1, …, n,
while the sequence of vectors from ℝn will be represented as x(j), j = 0, 1, …. Using this notation, we can
write the method of simple iterations that will be used for searching the fixed point of (1) in the form

(2)

for a certain initial x(0).
Conditions under which the process in Eq. (2) converges to a fixed point of the operator F can be

found, for example, in [2]. Of all the possible conditions, let us specially consider the following class of
operators and a theorem that is related to this class.

Definition 1. A mapping F : D ⊂ ℝn → ℝn is called a contraction mapping on D0 ⊂ D if there exists such
α < 1 that ||F(x) – F(y)|| < α||x – y|| holds true for all x, y ∈ D0.
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Theorem 1. Let the mapping F : D ⊂ ℝn → ℝn be contracting on a closed set D0 ⊂ D and F(D0) ⊂ D0 be
true. Then, F has a unique fixed point x* ∈ D0, and for any initial x(0) ∈ D0 the sequence {x(k)} that is defined
by Eq. (2) converges to x*.

We will adhere to the rather general definition of asynchronous iterations that was given in [3].
Let X1, X2, …, Xn be the given sets and X be their Cartesian product:

Accordingly, an element x ∈ X has the structure

where xi belong to Xi, i = 1, …, n. Let the functions fi : X → Xi be given and the function F : X → X be rep-
resented in the form

The problem now consists in finding a fixed point of the operator F, i.e., finding such x* ∈ X that x* =
F(x*) is true or, written in a component-wise notation,

Now let us define an asynchronous version of the method of simple iterations, which will be called asyn-
chronous iterations here and below, as follows:

Let us assume that the set T = {0, 1, 2, …} is the set of time moments when one or several components xi
of the vector x are updated by a certain processor of a distributed computer system. The classification of
parallel computing systems is available, for example, in [3]. Let Ti denote the set of time moments when
xi are updated.

It is reasonable to expect that in a distributed computer system a processor that updates the component
xi does not have up-to-date information regarding the other components of the vector x. Therefore, the
use of outdated information is possible in the asynchronous case. This fact can be written as

(3)

where  are time moments that satisfy the inequality

For all the moments t ∉ Ti we take that xi is not updated:

(4)
The elements of the set T should be considered as the indices of the sequence of real-time moments when
updating occurs. Processors that do not update the xi component do not have to know the set Ti, as this is
not required for calculating the iterations in (3) and (4). Hence, there is no need to have a global time in
the system. The difference (t – ) between the current time and the time  when the processor that
updates xi received information about the component xj for the last time can be considered as a delay in
information transfer. In a situation like this, it is convenient to consider the computational process in the
following manner. At the time moment t ∈ Ti, the processor that has finished its previous calculations and
is ready for new ones receives the values x1( ), …, xn( ) by means of a certain mechanism and
updates xi by the formula in (3). In doing so, the processor has absolutely no need to know the values of t,

, …,  or the elements of the sets Tj, j = 1, …, n.
It is worth noting that such iterative methods for solving systems of linear equations as the Jacobi or

Gauss–Seidel methods are special cases of the iteration in (3).
For the iterations (3) and (4) to be called asynchronous, certain conditions need to be imposed on the

sets Ti and the time moments .

The sets Ti are infinite and for any sequence {tk} ⊆ Ti that tends to infinity we have  = ∞ for
j = 1, i, n.
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This supposition guarantees that each component will be updated an infinite number of times, while
the outdated information will be eventually withdrawn from processing. In what follows, we will assume
that the above supposition holds true.

After the iterations in (3) and (4) and certain assumptions about these iterations have been introduced,
a question arises of what the conditions are under which these iterations converge to a fixed point of the
operator F. Conditions that are sufficient for this (see [3]) are provided by the following theorem.

Theorem 2. Let a sequence of nonempty sets {X(k)} exist such that the following conditions are satisfied:
• … ⊂ X(k + 1) ⊂ X(k) ⊂ … ⊂ X(0) ⊂ X;
• F(x) ∈ X(k + 1) for any k and ∀x ∈ X(k); moreover, if the sequence {y(k)} is such that y(k) ∈ X(k) is

fulfilled for k = 0, 1, …, then each limiting point {y(k)} is a fixed point of the operator F;
• for any k∈ {0, 1, …} there exist sets Xi(k) ∈ Xi such that X(k) = X1(k) × X2(k) × … × Xn(k) is valid;
• the initial approximation x(0) belongs to X(0).
Then, each limiting point of the sequence {x(t)} that is defined by the asynchronous iterations is a fixed point

of the operator F.
It should be noted that the first and second conditions in the theorem implicate that the synchronous

iterations x := F(x) that start from a certain initial x that belongs to X(0) converge to a fixed point of the
operator F. The third condition implies that if we take an arbitrary element X(k) and perform its permuta-
tion, we will again obtain an element that belongs to the set X(k).

Let us confine ourselves to considering operators of the form F : ℝn → ℝn. Let us consider the following
norm on ℝn:

where we denoted ω = (ω1, ω2, …, ωn) and ωi > 0, i = 1, …, n.
Now, if we consider contraction mappings with a contraction parameter α < 1 and suppose Xi = ℝ, i =

1, …, n as well as X = ℝn in the definition of asynchronous operations, then, according to the theorem, we
need to construct a sequence of sets {X(k)} in order to show that the asynchronous operations converge to
a fixed point x* of the operator F. Let us define these sets in the following way:

It is easy to check that the conditions of the theorem are satisfied. Hereinafter, we will use the following
norms:

(5)

(6)

2. SYSTEM OF LINEAR EQUATIONS
Let us consider the case

where A =   is a given matrix, b ∈ ℝn is a given vector of right-hand sides. Then, we seek an x* such
that the following equality is true:

The asynchronous iterations in (3) and (4) will have the following form for a system of linear equations:

(7)
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Chazan and Miranker [4] showed that for a system of linear equations, chaotic relaxations, which are a
special case of asynchronous iterations, converge to a solution of the system if and only if the inequality
λ1(|A|) > 1 holds true. Bertsekas and Tsitsiklis [3] generalized this result to include the case of asynchro-
nous iterations.

Theorem 3. Let a matrix A be such that the matrix I – A is invertible. The following statements are equiv-
alent:

1. λ1(|A|) < 1;
2. for any initial x(0), for any b ∈ ℝn, for any sets Ti that satisfy the conditions from the definition of asyn-

chronous iterations, and for any choice of variables  such that t – 2 <  < t, the sequence that is gen-
erated by the asynchronous iterations in (7) converges to (I – A)–1b.

Therefore, if an ordinary (synchronous) process converges, that is, the inequalities |λ1(A)| < 1 and
|λ1(A)| > 1 hold true, then asynchronous iterations, at least, of a certain form, necessarily diverge. The sit-
uation can be remedied by performing a certain number of synchronous iterations that reduce the error
after a certain group of asynchronous ones (partial synchronization).

In what follows, we will consider an algorithm that uses l ordinary iterations after every m asynchronous
ones. It is evident that there exists such a value of m that the combined iterative process converges even if
slower, generally speaking, than a completely synchronized process. Therefore, our approach only makes
sense if the asynchronous iterations are much cheaper than the synchronous ones.

The estimate of the gain that is made substantially depends on the form of the matrix A and, in a general
case, can be rather crude. A numerical experiment looks most likely to be efficient here. Nevertheless, we
will prove a lemma that indicates the limits of growth of errors in the asynchronous case at λ1(|A|) > 1.

Let x(t), t = 0, 1, 2, … be the sequence of asynchronous iterations for the system

and  be a solution of the system. Then, x(t) can be represented in the form x(t) =  + Δx(t), where Δx(t)
is the sequence of asynchronous iterations for the system

Lemma 1. If |λ1(A)| < 1 and λ1(|A|) > 1 for a matrix A, then the inequality

(8)

holds true for k = 0, 1, 2, ….
Proof. Let us prove the lemma by induction. For k = 0 we have

and, hence, the base case has been proved. Now, let Eq. (8) be true for all k ≤ m. Let us show that Eq. (8)
is then satisfied for k = m + 1. In accordance with the definition of asynchronous iterations, if we have
m ∈ Ti, then

and if we have m ∉ Ti, then

Let  be such a vector of length 2n that the equalities  = Δxi(m),  = 0 and  = 0,   =

Δxi(m) hold for m ∈ Ti and m ∉ Ti, respectively. Let us denote the vector ( , …, )T as
. For , , and Δx(m) we have the equality

where A1 and A2 are n × n matrices. For m ∈ Tj the jth row of the matrix A1 is equal to the jth row of the
matrix A, and for m ∉ Tj the jth row of the matrix A1 consists of zeros.
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The matrix A2 is a diagonal matrix for which the jth diagonal element equals zero if m ∈ Tj and unity
otherwise.

Let us note that the relations  = ,  ≤ ||A|| are valid and, by virtue of ||A|| ≥ λ1(|A|) > 1,
the inequality ||A2|| ≤ ||A|| is fulfilled. Then, the following inequality holds:

Let  =  for a certain natural s' < m and 1 ≤ j' ≤ n. As we have s' < m, the following
will hold true by virtue of the induction hypothesis

and, hence,

Thus the lemma has been proven.   □
Now, it is easy to prove the following theorem.
Theorem 4. If an iterative process consists of a sequence of groups of m asynchronous iterations that are fol-

lowed by l synchronous ones then the process converges for large enough values of l, the convergence rate being
no slower than λε(||A||/λε)m/(m + l) for an arbitrary λε that satisfies the inequality |λ1(A)| < λε < 1.

Proof. It follows from Lemma 2 that the error may grow by no more than ||A||m times after m asynchro-
nous iterations. As we have |λ1(A)| < 1, then, for ∀ε > 0 such that ε < 1 – |λ1(A)|, there exists such l0 that for
∀l ≥ l0 the inequality ||Al|| < (|λ1(A)| + ε)l < 1 holds true. Let us denote |λ1(A)| + ε as λε. It can be easily seen
that the inequality |λ1(A)| < λε < 1 is fulfilled. The norm of the error after m + l iterations (m asynchronous
iterations and l synchronous ones) can be estimated as follows:

For a large enough l we have , which proves the first part of the theorem.

We can see that after m + l iterations the error reduces  times. We would have had such a result

for a geometric convergence with a parameter r if rm + l =  was valid. That is, we obtain

which proves the second part of the theorem. □

3. SYSTEM OF NONLINEAR EQUATIONS

Definition 2. An operator F from ℝn into ℝn is called a Lipschitz operator (also an n-Lipschitz operator
[2]) on D ⊆ ℝn, if there exists a nonnegative matrix A such that the following inequality holds true:

(9)

where the modulus operation is applied component-wise and the inequality holds for all the components.
The matrix A is called the Lipschitz matrix of the operator F.

Definition 3. An operator F from ℝn into ℝn is called a contraction operator (also an n-contraction
operator [2]) on D ⊆ ℝn, if it is Lipschitz on D and if its Lipschitz matrix A satisfies λ1(A) < 1, where λ1(A)
is the first eigenvalue of the matrix A.

The following theorem is valid [2] for contraction operators.
Theorem 5. If F is a contraction operator on a closed set D ⊆ ℝn and if F(D) ⊆ D, then arbitrary asynchro-

nous iterations converge to the unique solution of the system in Eq. (1).
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Therefore, if an ordinary (synchronous) process xk + 1 = F(xk), k = 0, 1, … converges and the operator
F does not satisfy the conditions of Theorem 5, then asynchronous operations, at least, of a certain form,
necessarily diverge.

An example of the operator F for which asynchronous iterations diverge is easy to construct. It suffices
to take a matrix for which |λ1(A)| < 1 – δ, δ > 0, |λ1(A)| > 1. Then, it can be easily seen that the operator
A + G, where G is an operator with a norm that is less than δ, will possess the required properties, with the
divergence rate of the synchronous process not necessarily being geometric. This situation is rather similar
to the linear case. In fact, let us perform l ordinary iterations after every m asynchronous ones (the geo-
metric convergence of the ordinary iterations is assumed).

It is evident that a value of m exists for which the combined process converges but at a rate that is, gen-
erally speaking, lower than the rate for the completely synchronized process. Therefore, our approach
makes sense in this case, too, if the asynchronous iterations are much cheaper than the synchronous ones.

The estimate of the gain that is made substantially depends on the type of divergence and, in a general
case, can be rather crude. A numerical experiment looks most likely to be efficient here. Let us prove a
lemma that indicates the limits of growth of errors in the asynchronous case at λ1(|A|) > 1.

Let x(t), t = 0, 1, 2, … be a sequence of asynchronous iterations for the system in (1) and  be a solution
of the system. Let F be a Lipschitz operator on D ∈ ℝn with a Lipschitz matrix A, with F not being a con-
traction operator, i.e., the inequality λ1(|A|) > 1 holds true. Without loss of generality, we can take
that  = F( ) = 0 when we consider the operator F(x + ) – . Assuming y =  in the inequality in
Eq. (9), the Lipschitz condition for the operator F takes the form |F(x)| ≤ A|x|, ∀x ∈ D.

Lemma 2. Under the above assumptions with regard to the operator F, the following inequality is fulfilled

(10)
for k = 0, 1, 2, ….

Proof. Let us prove the lemma by induction. For k we have

and, hence, the basis has been proved. Now, let (10) be fulfilled for all k ≤ m. Let us show that (10) then
also holds true for k = m + 1. According to the definition of asynchronous iterations, if m ∈ Ti then we have

,
while if m ∉ Ti then we obtain

If we have xi(m + 1) = xi(m), then the following relationship holds by virtue of the induction hypothesis:

If we have xi(m + 1) = fi( ), then we have

due to the operator F being Lipschitz. From the definition of asynchronous iterations we have  ≤ m,
j = 1, …, n and the following inequality follows from the induction hypothesis:

Hence, we have |xi(m + 1)| ≤ ||A||m + 1||x(0)|| for any i, and the lemma has been proven.
Now, it is easy to prove the following theorem for the class of the nonlinear operators that were

described above.   □
Theorem 6. If an iterative process consists of a sequence of groups of m asynchronous iterations followed by

l synchronous ones, then for a large enough value of l the process converges at a rate that is not slower than
r(||A||/r)m/m + l, where r < 1 is the parameter of geometric convergence of the iterations in Eq. (2) to the solution
of Eq. (1).
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CONCLUSIONS
Thus, for a certain class of computational systems the method of partial synchronization may prove to

be a useful tool in the nonlinear case as well. It is apparent that other linearization methods, for example,
Newton’s method, also allow partial synchronization. However, the question of the rate of convergence
requires special study in this case.
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