Improving Switch Lowering for
The LLVM Compiler System

Anton Korobeynikov
asl@math.spbu.ru

Faculty of Mathematics and Mechanics,
Saint Petersburg State University

SYRCoSE 2007

Outline

@ The LLVM Compiler Infrastructure
@ Compiler Infrastructure
@ Targets
@ Link-Time Optimization
o JIT
@ Target Independent Code Generator

Outline

@ The LLVM Compiler Infrastructure
@ Compiler Infrastructure
@ Targets
@ Link-Time Optimization
o JIT
@ Target Independent Code Generator

© Switch Lowering
@ Intro
@ Switches in LLVM
@ Real-World Examples
@ Methods To Emit a Switch
@ Glueing Things Together

Outline

@ The LLVM Compiler Infrastructure
@ Compiler Infrastructure
@ Targets
@ Link-Time Optimization
o JIT
@ Target Independent Code Generator

© Switch Lowering
@ Intro
@ Switches in LLVM
@ Real-World Examples
@ Methods To Emit a Switch
@ Glueing Things Together

© Results

The LLVM Compiler Infrastructure
€000

Compiler Infrastructure

@ Provides modular and usable components for building
compilers of any form.

@ Reduces the time and cost to construct a particular compiler.
@ Allows components to be shared across different compilers.

@ Allows choice of the right component for the job.

The LLVM Compiler Infrastructure
0@00

LLVM Compiler Infrastructure

o A well-defined Intermediate Representation (IR).
e Language independent, target independent, easy to use.

The LLVM Compiler Infrastructure
0@00

LLVM Compiler Infrastructure

o A well-defined Intermediate Representation (IR).
e Language independent, target independent, easy to use.
@ Many high-quality components (libraries) with clean
interface.

o Optimizations, analyses, modular target-independent code
generator, JIT compiler, accurate GC, link time optimization,
X86/PPC/ARM/1A64/SPARC/Alpha code generators.

The LLVM Compiler Infrastructure
0@00

LLVM Compiler Infrastructure

o A well-defined Intermediate Representation (IR).

e Language independent, target independent, easy to use.

@ Many high-quality components (libraries) with clean
interface.

o Optimizations, analyses, modular target-independent code
generator, JIT compiler, accurate GC, link time optimization,
X86/PPC/ARM/1A64/SPARC/Alpha code generators.

@ Tools built from the libraries.
Aggressive optimizing C/C++/0bjC/Ada compiler.
Automated compiler debugger.

Modular optimizer.
LLVM JIT.

The LLVM Compiler Infrastructure
0000

LLVM IR

@ IR is a typed Virtual Instruction Set.

o Operations are low-level instructions.

e Language- & target- independent semantics.
@ IR has three representations.

@ In-memory IR - for the compiler to work on.

o On-disk binary IR - interchange format.

e On-disk test IR - compiler debugging, inspection.
@ IR has a clean & simple design.

o Small memory footprint, fast to manipulate.
o Easy to understand, well specified & documented.

The LLVM Compiler Infrastructure

[e]e]e]]

LLVM IR Features

@ Basic features

Lightweight design, efficient and easy to understand.
Scalar values are always in SSA form, memory never is.
IR is fully typed and types are rigorously checked for
consistency.

Explicit array/struct accesses, supports alias/dependence
analysis.

Full support for vector/SIMD datatypes and operations.
Full support for GCC-style inline assembly.

@ Minor features

Exceptions are explicit in CFG, not at on-the-side
datastructure.

IR is easily extensible with intrinsic functions (debug
information and EH information were added this way!).
Supports custom calling conventions.

The LLVM Compiler Infrastructure
®00

Targets/Platforms Currently Supported

e Stable
e X86-32 (ELF, Windows, Darwin), X86-64 (Darwin, ELF)
o PowerPC-32/64 (Darwin; Linux support is still experimental)
o ARM (Darwin, ELF)
e Sparc (V8, V9)
o Alpha
@ Experimental
o |AG4
e MIPS (in progress, come soon!)
e Sony/IBM Cell (in progress, come really soon!)

@ Other

o C
e MSIL

The LLVM Compiler Infrastructure
o] 1]

GCC Integration (llvm-gcc4)

@ Based on Apple’s gcc 4.0.1 branch.
@ Uses GCC front-end with LLVM optimizer and code
generator
o Reuses parser, runtime libraries, and some lowering bits.
e Requires a new GCC "tree-to-llvm" converter.
@ Aggressive and fast optimizer built on modern techniques
o SSA-based optimizer for fast and aggressive transforms.
o Aggressive loop optimization: unrolling, unswitching, ...
e Many InterProcedural (cross-function) optimizations: inlining,
dead argument elimination, IP constant propagation, global
variable optimization, ...

The LLVM Compiler Infrastructure
ooe

Compilation Example

Original C Source

unsigned gcd(unsigned a,
return (b ? gcd(b, a %
}

unsigned b) {
b) : a);

Optimized LLVM IR

define 132 @gcd(i32 %a, i32 %b) {
entry:

%bz = icmp eq i32 %b, 0

br i1 %bz, label %return, label
loop :

b1 = phi i32 [%c, %loop],

%al = phi i32 [%b1, %loop 1,

%c = urem i32 %al, %b1

%cz = icmp eq i32 %c, 0

br i1 %cz, label %return, label
return:

%res = phi i32 [%a, %entry 1,

ret i32 %res
}

%loop
[%, %entry]
[%, %entry]
%loop

[%b1, %loop]

The LLVM Compiler Infrastructure
°

Link-Time Optimization (LTO)

@ Link-time is a natural place for interprocedural optimizations.
@ LLVM is safe with partial programs (dynamically loaded
code, libraries, etc).

Compile Time

C/C++ |Lwm LLVM
Frontend Optimizer

\LLVM IR in .o files

PyPy [t LLVM P LLVM [tvw| LLVM |wwvw| LLVM
Frontend Optimizer . Linker Optimizer Codegen
LLVM IR in .o files
Any other |Lwm| LLVM
Frontend Optimizer
Link Time

The LLVM Compiler Infrastructure
o

Just-In Time Compilation

@ LLVM IR can be executed directly:
e Via native execution engine on X86 and PowerPC.
o Via interpreter everywhere LLVM is running on.

@ Execution engine compiles functions lazily.

@ External interfaces: one can call external (native) functions
and obtain the address of function being JIT ed.

Existing projects using JIT:
@ Present
o Apple’s OpenGL JIT
o Aldrin (modular music sequencer/tracker)
o Future

o LLVM-QEMU (GSoC 2007 project)
o Mesa

The LLVM Compiler Infrastructure
°

Target Independent Code Generator

@ Abstract target description interfaces which capture
important properties about various aspects of the machine.

@ Classes used to represent the machine code being generated
for a target.

© Target-independent algorithms used to implement various
phases of native code generation (register allocation,
scheduling, stack frame representation, etc). Switch
lowering is also implemented here

© Implementations of the abstract target description interfaces
for particular targets.

© The target-independent JIT components.

Switch Lowering
°

Switch Lowering: Intro

@ Switches are very common to see:

o Compilers
o Virtual Machines
o Parsers

@ Switches are often used in the tight inner loops.
Thus:
@ We have to lower switches in optimal way.

o Usual tradeof is size/speed, but often small size implies
high speed.

@ If we can use target-dependent "tricks", we must use them.

Switch Lowering
[1]

Switches in LLVM

@ Switches are represented in LLVM with the help of switch
instruction:

Syntax of switch instruction

switch <intty > <value >, label <defaultdest> [
<intty > <val>, label <dest> ...

]

Switch Lowering

o0

Switches in LLVM

@ Switches are represented in LLVM with the help of switch
instruction:

Syntax of switch instruction

switch <intty > <value >, label <defaultdest> [
<intty > <val>, label <dest>

]

Implement a jump table

Emulate a conditional branch

switch i32 %val, label %def [
i32 0, label %onzero
i32 1, label %onone
i32 2, label %ontwo

1

%Val = zext i1 %value to i32

switch i32 %Val, label %tdest [
i32 0, label %fdest

1

Switch Lowering
oce

Switches in LLVM

Consider this switch

switch i32 %val, label %otherwise [

i32 —1, label %dest1

i32 0, label %dest1

i32 1, label %dest1
i32 2, label %dest1
i32 3, label %dest2

Switch Lowering
oce

Switches in LLVM

Consider this switch

switch i32 %val, label %otherwise [

i32 —1, label %dest1

i32 0, label %dest1

i32 1, label %dest1
i32 2, label %dest1
i32 3, label %dest2

switch i32 %val, label %otherwise [
i32 —1..2, label %dest1
i32 3, label %dest2

Switch Lowering
°

Real-World Examples

253.perlbmk
switch i32 %tmp, label %bb36 [Python)
i32 label %bb30

0,
H 0,
192 9, (ool Yl switch i32 %c1, label %bb72 [
e i32 33, label %bb6
i32 7. label %bb55 ’

i32 37, label %bb56
i32 38, label %bb61
i32 42, label %bb37
i32 43, label %bb27
i32 45, label %bb32
i32 47, label %bb44
i32 60, label %bbi11
i32 61, label %bb

i32 62, label %bb20
i32 94, label %bb66
i32 124, label %bb51

i32 13, label %bb100
i32 31, label %bb100
i32 32, label %bb100
i32 33, label %bb93
i32 35, label %bb88
i32 126, label %bb55
i32 173, label %bb62
i32 174, label %bb62
i32 184, label %bb80
i32 185, label %bb80
i32 186, label %bb80
i32 188, label %bb80]
i32 310, label %bb33

Switch Lowering
©000000000

Strategy: Series of Comparisons

Naive approach:
@ Just emit series of comparisons.

@ Note, we need only 1 unsigned comparison to check case
range (shown in example).

Switch Lowering
©000000000

Strategy: Series of Comparisons

Naive approach:
@ Just emit series of comparisons.

@ Note, we need only 1 unsigned comparison to check case
range (shown in example).

Naive, but:

@ Zero overhead!

entry:
0 — § 0
switch i32 %v, label %bbl [0/°t1 _ ?dd e /0\./’ 10
i32 —1..2, label %bb2 %t2 = icmp ule i32 %t1, 3
. oy Y br i1 %t2, label %bb2, label %next
0, PITAL
: i32 3, label %bb3 -

%t3 = icmp eq i32 %v 3
br i1 %t3, label %bb3, label %bb1

Switch Lowering
0®00000000

Strategy: Jump Table

If switch is dense enough we can emit jump table:

@ Header, which subtracts the minimal case from the input
value.

@ Case set span check.
@ An array of addresses of all destinations.

@ Branch instruction which takes index and array of
destinations as arguments.

Switch Lowering
0®00000000

Strategy: Jump Table

If switch is dense enough we can emit jump table:

@ Header, which subtracts the minimal case from the input
value.

@ Case set span check.
@ An array of addresses of all destinations.

@ Branch instruction which takes index and array of
destinations as arguments.

Possible problems:
@ Not all targets support jump tables.
@ Big overhead due to pipeline stalls.

@ We need to represent every possible case (even default).
Thus - big size of data generated.

Switch Lowering
0080000000

Jump Table Example

entry:
movl val, %eax
Before incl %eax
cmpl $4, %eax
switch i32 %v, label %bbl [ja bb1
i32 —1..2, label %bb2 jmpl *JTI1(,%eax,4)
i32 3, label %bb3 JTI:
1 .long bb2
.long bb2
.long bb2
.long bb2
.long bb3

Switch Lowering
000@000000

Strategy: Balanced Binary Tree

Idea: store case values somewhere in the sorted order and use
binary search to find needed case in logarithmic of number of
cases time.
Implementation:
@ Select middle case from the current case set (’pivot’). The
pivot splits the whole case set into ’left’ and ’'right’ subsets.

Emit signed comparison of input value with the pivot.

(2]

© Repeat steps 1-2 for ’left’ and ’right’ subtrees, until current
case set is exactly one case.

()

Emit comparison of input value with remaining case. Branch
to case destination if equals, to default destination
otherwise.

Switch Lowering

Balanced Binary Tree Example

0000@00000

entry:
Before Y%p = icmp slt i32 %v, 3
br i1 %p, label %l1, label %2
switch i32 %v, label %bbl [12: ; leaf 2
i32 —1..2, label %bb2 %t2 = icmp eq i32 %v, 3
i32 3, label %bb3 br i1 %t2, label %bb3, label %bb1
I 11: ; leaf 1
%off = add i32 %v, 1
%t1 = icmp ule i32 %off, 3
br i1 %t1, label %bb2, label %bb1

4

Switch Lowering
00000@0000

Strategy: Shift-And

Consider we have the following switch (usually a result of
if-series conversion):

Another Example from Python 2.5

switch i32 %c, label %bb [
i32 91, label %bb2
i32 93, label %bb3
i32 100, label %bb2
i32 101, label %bb3
i32 113, label %bb2
i32 115, label %bb3
1

Can we emit it better than via ugly binary tree?

Switch Lowering
0000008000

Shift-And Continued

Yes, surely! Consider these conditions are met:
@ Total number of unique destinations of switch is not so big.

© Case set span of the switch is less than bitwidth of general
purpose register of our target machine.

Algorithm

o Create destination mask for each unique destination. The bit
of mask is set to ’1’ if corresponding case goes to the
selected destination and is set to 0’ otherwise.

@ Use switch input value to create input mask at run-time.

@ 'And’ input mask with pre-computed destination masks.
Branch to corresponding destination BB if not zero.

Switch Lowering
0000000800

Shift-And Example

entry: ; Perform range comparison
T o e 5z
%t2 = icmp ugt i32 %t1, 24

br i1 %t2, label %bb, label %header
header: ; Compute runtime mask

%t3 = shl i32 1, %t1

br label Y%casel
casel: ; Compare with first mask

%t4 = and i32 %t3, u0x400201

%t5 = icmp ne i32 %t4, 0

br i1 %t5, label %bb2, label %case2
case2: ; Compare with second mask

%t6 = and i32 %t3, u0x1000404

%t7 = icmp ne i32 %t6, 0

br i1 %t7, label %bb3, label %bb

switch i32 %c, label %bb [
i32 91, label %bb2
i32 93, label %bb3
i32 100, label %bb2
i32 101, label %bb3
i32 113, label %bb2
i32 115, label %bb3

Switch Lowering
00000000e0

Strategy: Binary Tree With Custom Pivot Selection

How we should operate, if we want to stack different strategies
to emit switch?

@ |dea: always emit binary tree and try to apply different
strategies during emission of subtrees.

Switch Lowering
00000000e0

Strategy: Binary Tree With Custom Pivot Selection

How we should operate, if we want to stack different strategies
to emit switch?
@ |dea: always emit binary tree and try to apply different
strategies during emission of subtrees.

@ Problem: usual binary tree is not smart enough. For
example, if we’re emitting jump tables we are interested in
the best pivot maximizing densities of right and left subtree.

Switch Lowering
00000000e0

Strategy: Binary Tree With Custom Pivot Selection

How we should operate, if we want to stack different strategies
to emit switch?
@ |dea: always emit binary tree and try to apply different
strategies during emission of subtrees.

@ Problem: usual binary tree is not smart enough. For
example, if we’re emitting jump tables we are interested in
the best pivot maximizing densities of right and left subtree.

Best pivot criteria:

@ Should not split tree in trivial cases, for example, in the
middle of the dense case set.

@ Split switch maximizing the distance between subtrees.

Switch Lowering
000000000e

Switch Split Metric — Pivot Quality

We can now introduce metric used to split a switch.
@ Denote [; and r; the densities of the left and right subtrees
being split at pivot i.
@ Denote a; the maximal case of the left subtree and b; —
minimal case of the right subtree.

The quality q; of pivot i is defined as:
qi = (li + ri) log(bi — a;)

Features:
@ Trivial cases (splitting in the middle of the dense block) are
thrown.

@ More far subtrees are selected, when sum of the densities
for two different pivots are close.

Switch Lowering

Glueing Things Together

Worklist-driven Algorithm

@ Push original switch into worklist.

© Pop current case set from worklist.

© Try to apply BitTest (Shift-And) strategy

© Try to apply SmallSwitch (series of comparisons) strategy
© Try to apply JumpTable strategy

© Emit binary tree:

@ Select pivot of maximal quality
@ Split case set at this pivot.
© Push two new case sets into worklist.

@ lterate 2-6 until worklist is not empty.

Results

Results

@ 253.perlomk from SPEC’2006

@ llvm-gcc4 itself (bootsrapped and used to compile huge
source sets)

Speed Gain

@ 5-7% on compilation of huge source sets (Mozilla and Qt
library were used)

@ 5% on 253.perlbmk

	The LLVM Compiler Infrastructure
	Compiler Infrastructure
	Targets
	Link-Time Optimization
	JIT
	Target Independent Code Generator

	Switch Lowering
	Intro
	Switches in LLVM
	Real-World Examples
	Methods To Emit a Switch
	Glueing Things Together

	Results

