
The LLVM Compiler Infrastructure Switch Lowering Results

Improving Switch Lowering for

The LLVM Compiler System

Anton Korobeynikov

asl@math.spbu.ru

Faculty of Mathematics and Mechanics,

Saint Petersburg State University

SYRCoSE 2007

The LLVM Compiler Infrastructure Switch Lowering Results

Outline

1 The LLVM Compiler Infrastructure

Compiler Infrastructure

Targets

Link-Time Optimization

JIT

Target Independent Code Generator

2 Switch Lowering

Intro

Switches in LLVM

Real-World Examples

Methods To Emit a Switch

Glueing Things Together

3 Results

The LLVM Compiler Infrastructure Switch Lowering Results

Outline

1 The LLVM Compiler Infrastructure

Compiler Infrastructure

Targets

Link-Time Optimization

JIT

Target Independent Code Generator

2 Switch Lowering

Intro

Switches in LLVM

Real-World Examples

Methods To Emit a Switch

Glueing Things Together

3 Results

The LLVM Compiler Infrastructure Switch Lowering Results

Outline

1 The LLVM Compiler Infrastructure

Compiler Infrastructure

Targets

Link-Time Optimization

JIT

Target Independent Code Generator

2 Switch Lowering

Intro

Switches in LLVM

Real-World Examples

Methods To Emit a Switch

Glueing Things Together

3 Results

The LLVM Compiler Infrastructure Switch Lowering Results

Compiler Infrastructure

Provides modular and usable components for building

compilers of any form.

Reduces the time and cost to construct a particular compiler.

Allows components to be shared across different compilers.

Allows choice of the right component for the job.

The LLVM Compiler Infrastructure Switch Lowering Results

LLVM Compiler Infrastructure

A well-defined Intermediate Representation (IR).

Language independent, target independent, easy to use.

Many high-quality components (libraries) with clean

interface.

Optimizations, analyses, modular target-independent code

generator, JIT compiler, accurate GC, link time optimization,

X86/PPC/ARM/IA64/SPARC/Alpha code generators.

Tools built from the libraries.

Aggressive optimizing C/C++/ObjC/Ada compiler.

Automated compiler debugger.

Modular optimizer.

LLVM JIT.

The LLVM Compiler Infrastructure Switch Lowering Results

LLVM Compiler Infrastructure

A well-defined Intermediate Representation (IR).

Language independent, target independent, easy to use.

Many high-quality components (libraries) with clean

interface.

Optimizations, analyses, modular target-independent code

generator, JIT compiler, accurate GC, link time optimization,

X86/PPC/ARM/IA64/SPARC/Alpha code generators.

Tools built from the libraries.

Aggressive optimizing C/C++/ObjC/Ada compiler.

Automated compiler debugger.

Modular optimizer.

LLVM JIT.

The LLVM Compiler Infrastructure Switch Lowering Results

LLVM Compiler Infrastructure

A well-defined Intermediate Representation (IR).

Language independent, target independent, easy to use.

Many high-quality components (libraries) with clean

interface.

Optimizations, analyses, modular target-independent code

generator, JIT compiler, accurate GC, link time optimization,

X86/PPC/ARM/IA64/SPARC/Alpha code generators.

Tools built from the libraries.

Aggressive optimizing C/C++/ObjC/Ada compiler.

Automated compiler debugger.

Modular optimizer.

LLVM JIT.

The LLVM Compiler Infrastructure Switch Lowering Results

LLVM IR

IR is a typed Virtual Instruction Set.

Operations are low-level instructions.

Language- & target- independent semantics.

IR has three representations.

In-memory IR - for the compiler to work on.

On-disk binary IR - interchange format.

On-disk test IR - compiler debugging, inspection.

IR has a clean & simple design.

Small memory footprint, fast to manipulate.

Easy to understand, well specified & documented.

The LLVM Compiler Infrastructure Switch Lowering Results

LLVM IR Features

Basic features

Lightweight design, efficient and easy to understand.

Scalar values are always in SSA form, memory never is.

IR is fully typed and types are rigorously checked for

consistency.

Explicit array/struct accesses, supports alias/dependence

analysis.

Full support for vector/SIMD datatypes and operations.

Full support for GCC-style inline assembly.

Minor features

Exceptions are explicit in CFG, not at on-the-side

datastructure.

IR is easily extensible with intrinsic functions (debug

information and EH information were added this way!).

Supports custom calling conventions.

The LLVM Compiler Infrastructure Switch Lowering Results

Targets/Platforms Currently Supported

Stable

X86-32 (ELF, Windows, Darwin), X86-64 (Darwin, ELF)

PowerPC-32/64 (Darwin; Linux support is still experimental)

ARM (Darwin, ELF)

Sparc (V8, V9)

Alpha

Experimental

IA64

MIPS (in progress, come soon!)

Sony/IBM Cell (in progress, come really soon!)

Other

C

MSIL

The LLVM Compiler Infrastructure Switch Lowering Results

GCC Integration (llvm-gcc4)

Based on Apple’s gcc 4.0.1 branch.

Uses GCC front-end with LLVM optimizer and code

generator

Reuses parser, runtime libraries, and some lowering bits.

Requires a new GCC "tree-to-llvm" converter.

Aggressive and fast optimizer built on modern techniques

SSA-based optimizer for fast and aggressive transforms.

Aggressive loop optimization: unrolling, unswitching, ...

Many InterProcedural (cross-function) optimizations: inlining,

dead argument elimination, IP constant propagation, global

variable optimization, ...

The LLVM Compiler Infrastructure Switch Lowering Results

Compilation Example

Original C Source

unsigned gcd (unsigned a , unsigned b) {

return (b ? gcd (b , a % b) : a) ;

}

Optimized LLVM IR

def ine i 32 @gcd (i 32 %a , i 32 %b) {

e n t r y :

%bz = icmp eq i 32 %b , 0

br i 1 %bz , l abe l %re tu rn , l abe l %loop

loop :

%b1 = phi i 32 [%c , %loop] , [%b , %en t r y]

%a1 = phi i 32 [%b1 , %loop] , [%a , %en t r y]

%c = urem i 32 %a1 , %b1

%cz = icmp eq i 32 %c , 0

br i 1 %cz , l abe l %re tu rn , l abe l %loop

r e t u r n :

%res = phi i 32 [%a , %en t r y] , [%b1 , %loop]

re t i 32 %res

}

The LLVM Compiler Infrastructure Switch Lowering Results

Link-Time Optimization (LTO)

Link-time is a natural place for interprocedural optimizations.

LLVM is safe with partial programs (dynamically loaded

code, libraries, etc).

C/C++

Frontend

PyPy

Frontend

Any other

Frontend

LLVM

Optimizer

LLVM

LLVM

Optimizer

LLVM

LLVM

Optimizer

LLVM

Compile Time

LLVM

Linker

LLVM IR in .o files

LLVM IR in .o files

LLVM

Optimizer

LLVM LLVM

Codegen

LLVM

Link Time

The LLVM Compiler Infrastructure Switch Lowering Results

Just-In Time Compilation

LLVM IR can be executed directly:

Via native execution engine on X86 and PowerPC.

Via interpreter everywhere LLVM is running on.

Execution engine compiles functions lazily.

External interfaces: one can call external (native) functions

and obtain the address of function being JIT’ed.

Existing projects using JIT:

Present

Apple’s OpenGL JIT

Aldrin (modular music sequencer/tracker)

Future

LLVM-QEMU (GSoC 2007 project)

Mesa

The LLVM Compiler Infrastructure Switch Lowering Results

Target Independent Code Generator

1 Abstract target description interfaces which capture

important properties about various aspects of the machine.

2 Classes used to represent the machine code being generated

for a target.

3 Target-independent algorithms used to implement various

phases of native code generation (register allocation,

scheduling, stack frame representation, etc). Switch

lowering is also implemented here

4 Implementations of the abstract target description interfaces

for particular targets.

5 The target-independent JIT components.

The LLVM Compiler Infrastructure Switch Lowering Results

Switch Lowering: Intro

Switches are very common to see:

Compilers

Virtual Machines

Parsers

Switches are often used in the tight inner loops.

Thus:

We have to lower switches in optimal way.

Usual tradeof is size/speed, but often small size implies

high speed.

If we can use target-dependent "tricks", we must use them.

The LLVM Compiler Infrastructure Switch Lowering Results

Switches in LLVM

Switches are represented in LLVM with the help of switch

instruction:

Syntax of switch instruction

switch < i n t t y > <va lue >, l abe l <de f a u l t d e s t > [

< i n t t y > <va l >, l abe l <dest > . . .

]

Emulate a conditional branch

%Val = zext i 1 %va l ue to i 32

switch i 32 %Val , l abe l %tdes t [

i 32 0 , l abe l %fdes t

]

Implement a jump table

switch i 32 %va l , l abe l %def [

i 32 0 , l abe l %onzero

i 32 1 , l abe l %onone

i32 2 , l abe l %ontwo

]

The LLVM Compiler Infrastructure Switch Lowering Results

Switches in LLVM

Switches are represented in LLVM with the help of switch

instruction:

Syntax of switch instruction

switch < i n t t y > <va lue >, l abe l <de f a u l t d e s t > [

< i n t t y > <va l >, l abe l <dest > . . .

]

Emulate a conditional branch

%Val = zext i 1 %va l ue to i 32

switch i 32 %Val , l abe l %tdes t [

i 32 0 , l abe l %fdes t

]

Implement a jump table

switch i 32 %va l , l abe l %def [

i 32 0 , l abe l %onzero

i 32 1 , l abe l %onone

i32 2 , l abe l %ontwo

]

The LLVM Compiler Infrastructure Switch Lowering Results

Switches in LLVM

Consider this switch

switch i 32 %va l , l abe l %othe rw i se [

i 32 −1, l abe l %dest1

i 32 0 , l abe l %dest1

i 32 1 , l abe l %dest1

i 32 2 , l abe l %dest1

i 32 3 , l abe l %dest2

]

Compact it!

switch i 32 %va l , l abe l %othe rw i se [

i 32 −1..2 , l abe l %dest1

i 32 3 , l abe l %dest2

]

The LLVM Compiler Infrastructure Switch Lowering Results

Switches in LLVM

Consider this switch

switch i 32 %va l , l abe l %othe rw i se [

i 32 −1, l abe l %dest1

i 32 0 , l abe l %dest1

i 32 1 , l abe l %dest1

i 32 2 , l abe l %dest1

i 32 3 , l abe l %dest2

]

Compact it!

switch i 32 %va l , l abe l %othe rw i se [

i 32 −1..2 , l abe l %dest1

i 32 3 , l abe l %dest2

]

The LLVM Compiler Infrastructure Switch Lowering Results

Real-World Examples

253.perlbmk

switch i 32 %tmp , l abe l %bb36 [

i 32 0 , l abe l %bb30

i32 5 , l abe l %bb72

i32 6 , l abe l %bb55

i32 7 , l abe l %bb55

i32 13 , l abe l %bb100

i32 31 , l abe l %bb100

i32 32 , l abe l %bb100

i32 33 , l abe l %bb93

i32 35 , l abe l %bb88

i32 126 , l abe l %bb55

i32 173 , l abe l %bb62

i32 174 , l abe l %bb62

i32 184 , l abe l %bb80

i32 185 , l abe l %bb80

i32 186 , l abe l %bb80

i32 188 , l abe l %bb80

i32 310 , l abe l %bb33

]

Python 2.5

switch i 32 %c1 , l abe l %bb72 [

i 32 33 , l abe l %bb6

i32 37 , l abe l %bb56

i32 38 , l abe l %bb61

i32 42 , l abe l %bb37

i32 43 , l abe l %bb27

i32 45 , l abe l %bb32

i32 47 , l abe l %bb44

i32 60 , l abe l %bb11

i32 61 , l abe l %bb

i32 62 , l abe l %bb20

i32 94 , l abe l %bb66

i32 124 , l abe l %bb51

]

The LLVM Compiler Infrastructure Switch Lowering Results

Strategy: Series of Comparisons

Naive approach:

Just emit series of comparisons.

Note, we need only 1 unsigned comparison to check case

range (shown in example).

Naive, but:

Zero overhead!

Before

switch i 32 %v , l abe l %bb1 [

i 32 −1..2 , l abe l %bb2

i32 3 , l abe l %bb3

]

After

en t r y :

%t1 = add i 32 %v , 1

%t2 = icmp ule i 32 %t1 , 3

br i 1 %t2 , l abe l %bb2 , l abe l %next

next :

%t3 = icmp eq i 32 %v 3

br i 1 %t3 , l abe l %bb3 , l abe l %bb1

The LLVM Compiler Infrastructure Switch Lowering Results

Strategy: Series of Comparisons

Naive approach:

Just emit series of comparisons.

Note, we need only 1 unsigned comparison to check case

range (shown in example).

Naive, but:

Zero overhead!

Before

switch i 32 %v , l abe l %bb1 [

i 32 −1..2 , l abe l %bb2

i32 3 , l abe l %bb3

]

After

en t r y :

%t1 = add i 32 %v , 1

%t2 = icmp ule i 32 %t1 , 3

br i 1 %t2 , l abe l %bb2 , l abe l %next

next :

%t3 = icmp eq i 32 %v 3

br i 1 %t3 , l abe l %bb3 , l abe l %bb1

The LLVM Compiler Infrastructure Switch Lowering Results

Strategy: Jump Table

If switch is dense enough we can emit jump table:

Header, which subtracts the minimal case from the input

value.

Case set span check.

An array of addresses of all destinations.

Branch instruction which takes index and array of

destinations as arguments.

Possible problems:

Not all targets support jump tables.

Big overhead due to pipeline stalls.

We need to represent every possible case (even default).

Thus - big size of data generated.

The LLVM Compiler Infrastructure Switch Lowering Results

Strategy: Jump Table

If switch is dense enough we can emit jump table:

Header, which subtracts the minimal case from the input

value.

Case set span check.

An array of addresses of all destinations.

Branch instruction which takes index and array of

destinations as arguments.

Possible problems:

Not all targets support jump tables.

Big overhead due to pipeline stalls.

We need to represent every possible case (even default).

Thus - big size of data generated.

The LLVM Compiler Infrastructure Switch Lowering Results

Jump Table Example

Before

switch i 32 %v , l abe l %bb1 [

i 32 −1..2 , l abe l %bb2

i32 3 , l abe l %bb3

]

After

en t r y :

movl va l , %eax

i n c l %eax

cmpl $4 , %eax

ja bb1

jmpl ∗ J T I 1 (,%eax , 4)

J T I 1 :

. long bb2

. long bb2

. long bb2

. long bb2

. long bb3

The LLVM Compiler Infrastructure Switch Lowering Results

Strategy: Balanced Binary Tree

Idea: store case values somewhere in the sorted order and use

binary search to find needed case in logarithmic of number of

cases time.

Implementation:

1 Select middle case from the current case set (’pivot’). The

pivot splits the whole case set into ’left’ and ’right’ subsets.

2 Emit signed comparison of input value with the pivot.

3 Repeat steps 1-2 for ’left’ and ’right’ subtrees, until current

case set is exactly one case.

4 Emit comparison of input value with remaining case. Branch

to case destination if equals, to default destination

otherwise.

The LLVM Compiler Infrastructure Switch Lowering Results

Balanced Binary Tree Example

Before

switch i 32 %v , l abe l %bb1 [

i 32 −1..2 , l abe l %bb2

i32 3 , l abe l %bb3

]

After

en t r y :

%p = icmp s l t i 32 %v , 3

br i 1 %p , l abe l %l1 , l abe l %l2

l 2 : ; l e a f 2

%t2 = icmp eq i 32 %v , 3

br i 1 %t2 , l abe l %bb3 , l abe l %bb1

l 1 : ; l e a f 1

%o f f = add i 32 %v , 1

%t1 = icmp ule i 32 %of f , 3

br i 1 %t1 , l abe l %bb2 , l abe l %bb1

The LLVM Compiler Infrastructure Switch Lowering Results

Strategy: Shift-And

Consider we have the following switch (usually a result of

if-series conversion):

Another Example from Python 2.5

switch i 32 %c , l abe l %bb [

i 32 91 , l abe l %bb2

i32 93 , l abe l %bb3

i32 100 , l abe l %bb2

i32 101 , l abe l %bb3

i32 113 , l abe l %bb2

i32 115 , l abe l %bb3

]

Can we emit it better than via ugly binary tree?

The LLVM Compiler Infrastructure Switch Lowering Results

Shift-And Continued

Yes, surely! Consider these conditions are met:

1 Total number of unique destinations of switch is not so big.

2 Case set span of the switch is less than bitwidth of general

purpose register of our target machine.

Algorithm

Create destination mask for each unique destination. The bit

of mask is set to ’1’ if corresponding case goes to the

selected destination and is set to ’0’ otherwise.

Use switch input value to create input mask at run-time.

’And’ input mask with pre-computed destination masks.

Branch to corresponding destination BB if not zero.

The LLVM Compiler Infrastructure Switch Lowering Results

Shift-And Example

Before

switch i 32 %c , l abe l %bb [

i 32 91 , l abe l %bb2

i32 93 , l abe l %bb3

i32 100 , l abe l %bb2

i32 101 , l abe l %bb3

i32 113 , l abe l %bb2

i32 115 , l abe l %bb3

]

After

en t r y : ; Perform range compar ison

%t1 = sub i 32 %c , 91

%t2 = icmp ugt i 32 %t1 , 24

br i 1 %t2 , l abe l %bb , l abe l %header

header : ; Compute r un t ime mask

%t3 = sh l i 32 1 , %t1

br l abe l %case1

case1 : ; Compare w i t h f i r s t mask

%t4 = and i 32 %t3 , u0x400201

%t5 = icmp ne i 32 %t4 , 0

br i 1 %t5 , l abe l %bb2 , l abe l %case2

case2 : ; Compare w i t h second mask

%t6 = and i 32 %t3 , u0x1000404

%t7 = icmp ne i 32 %t6 , 0

br i 1 %t7 , l abe l %bb3 , l abe l %bb

The LLVM Compiler Infrastructure Switch Lowering Results

Strategy: Binary Tree With Custom Pivot Selection

How we should operate, if we want to stack different strategies

to emit switch?

Idea: always emit binary tree and try to apply different

strategies during emission of subtrees.

Problem: usual binary tree is not smart enough. For

example, if we’re emitting jump tables we are interested in

the best pivot maximizing densities of right and left subtree.

Best pivot criteria:

Should not split tree in trivial cases, for example, in the

middle of the dense case set.

Split switch maximizing the distance between subtrees.

The LLVM Compiler Infrastructure Switch Lowering Results

Strategy: Binary Tree With Custom Pivot Selection

How we should operate, if we want to stack different strategies

to emit switch?

Idea: always emit binary tree and try to apply different

strategies during emission of subtrees.

Problem: usual binary tree is not smart enough. For

example, if we’re emitting jump tables we are interested in

the best pivot maximizing densities of right and left subtree.

Best pivot criteria:

Should not split tree in trivial cases, for example, in the

middle of the dense case set.

Split switch maximizing the distance between subtrees.

The LLVM Compiler Infrastructure Switch Lowering Results

Strategy: Binary Tree With Custom Pivot Selection

How we should operate, if we want to stack different strategies

to emit switch?

Idea: always emit binary tree and try to apply different

strategies during emission of subtrees.

Problem: usual binary tree is not smart enough. For

example, if we’re emitting jump tables we are interested in

the best pivot maximizing densities of right and left subtree.

Best pivot criteria:

Should not split tree in trivial cases, for example, in the

middle of the dense case set.

Split switch maximizing the distance between subtrees.

The LLVM Compiler Infrastructure Switch Lowering Results

Switch Split Metric – Pivot Quality

We can now introduce metric used to split a switch.

Denote li and ri the densities of the left and right subtrees

being split at pivot i.
Denote ai the maximal case of the left subtree and bi –

minimal case of the right subtree.

The quality qi of pivot i is defined as:

qi = (li + ri) log(bi − ai)

Features:

Trivial cases (splitting in the middle of the dense block) are

thrown.

More far subtrees are selected, when sum of the densities

for two different pivots are close.

The LLVM Compiler Infrastructure Switch Lowering Results

Glueing Things Together

Worklist-driven Algorithm

1 Push original switch into worklist.

2 Pop current case set from worklist.

3 Try to apply BitTest (Shift-And) strategy

4 Try to apply SmallSwitch (series of comparisons) strategy

5 Try to apply JumpTable strategy

6 Emit binary tree:

1 Select pivot of maximal quality

2 Split case set at this pivot.

3 Push two new case sets into worklist.

7 Iterate 2-6 until worklist is not empty.

The LLVM Compiler Infrastructure Switch Lowering Results

Results

Testsuite

253.perlbmk from SPEC’2006

llvm-gcc4 itself (bootsrapped and used to compile huge

source sets)

Speed Gain

5-7% on compilation of huge source sets (Mozilla and Qt

library were used)

5% on 253.perlbmk

	The LLVM Compiler Infrastructure
	Compiler Infrastructure
	Targets
	Link-Time Optimization
	JIT
	Target Independent Code Generator

	Switch Lowering
	Intro
	Switches in LLVM
	Real-World Examples
	Methods To Emit a Switch
	Glueing Things Together

	Results

