

CSE 633: Parallel Algorithms (2012 Fall)

Hui Li

Department of Computer Science and Engineering

University at Buffalo, State University of New York

Parallel Implementation of Gradient Descent

 3D Bone Microarchitecture Modeling and
Fracture Risk

Hui Li

 Table of Contents

• Background and Introduction

• Gradient Descent Algorithm

• Paralleled Gradient Descent

• Experiment Results

Parallel Implementation of Gradient Descent

http://www.buffalo.edu/

Gradient descent is a general purpose optimization technique which

can be applied to optimize some arbitrary cost function J on many

prediction and classification algorithms.

Linear Regression Logistic Regression SVM

…

1 Hui Li

 Background

Parallel Implementation of Gradient Descent

y

x

x2

x1

x2

x1

http://www.buffalo.edu/

• Gradient descent update equations

We want to choose θ so as to minimize cost function J(θ) with learning rate α.

This update is simultaneously performed for all values of j = 0, . . . , n

• Batch gradient descent.

Here, m is the number of samples.

2 Hui Li

 Gradient Descent Algorithm

Parallel Implementation of Gradient Descent

http://www.buffalo.edu/

3 Hui Li

 Gradient Descent Illustration

Parallel Implementation of Gradient Descent

1
0

J(0,1)

http://www.buffalo.edu/

Basically, for t iteration of a batch gradient descent on m training

samples, it requires a time t × (T_1 × m + T_2). Here, T_1 is the time

required to process each sample, and T_2 is the time required to

update the parameters.

Normally m>>j, j is the number of parameter. For example, m would be

very large, say 100,000,000. So when m is large, it can be very time

consuming!

If we consider optimization problem, the algorithm is more expensive.

We need to parallel batch gradient descent!

4 Hui Li

 Time Complexity analysis

Parallel Implementation of Gradient Descent

http://www.buffalo.edu/

For each iteration (400 samples, for example):

5 Hui Li

 Parallel Scenario

Parallel Implementation of Gradient Descent

Training set

Worker1

Worker2

Worker3

Worker4

Master

• Each work calculates local gradient

• Send to a centralized master server and put them back together

• Update θ using θj := θj – α
𝟏

𝟒𝟎𝟎
(𝒕𝒆𝒎𝒑𝒋

(𝟏) + 𝒕𝒆𝒎𝒑𝒋
(𝟐)+𝒕𝒆𝒎𝒑𝒋

(𝟑)+𝒕𝒆𝒎𝒑𝒋
(𝟒))

• Ideally, we can get 4X speed up

Master Node

http://www.buffalo.edu/

6 Hui Li

 Parallel Implementation -- Initialization

Parallel Implementation of Gradient Descent

Label F_1 F_2 … F_n

1

-1

1

Dataset

Features (n dimensions)

……

Master Node:

1. Split data to p buckets for workers_1 to

worker_p evenly and the last bucket also store

the extra samples.

2. Send number of samples to workers such as

n_1, n_2, …n_p for initialization

Bucket_1 Bucket_2 Bucket_p

n_1 n_2 n_3

Worker_1 Worker_2 Worker_p

http://www.buffalo.edu/

7 Hui Li

 Parallel Implementation -- Update Gradient

Parallel Implementation of Gradient Descent

Master Node:

Send weight to each worker. We initialize weight to

1 at first time

Worker_1

 θ_0 θ_1 … θ_n

…… Worker:

1. Receive data from corresponding bucket by id

and number of samples sent from Master node

2. Calculate local gradient for each worker, for

example, 𝑡𝑒𝑚𝑝𝑗
(1) is the gradient for the first

worker.

3. Send local gradient to the master code

n_1

θj := θj – α
1

𝑚
(𝑡𝑒𝑚𝑝𝑗

(1) + 𝑡𝑒𝑚𝑝𝑗
(2) … 𝑡𝑒𝑚𝑝𝑗

(𝑝))

Update Weight θj at the Master Node

Master

…… 𝑡𝑒𝑚𝑝𝑗
(𝑝)

Worker_p

Master Node:

Sum up local gradient and update weight for θj
(j=1 … n) simualtaniously

http://www.buffalo.edu/

8 Hui Li

 Parallel Implementation -- Cost and Termination

Parallel Implementation of Gradient Descent

Master Node:

 If Error_new is less than Error_old, update

Error_old with Error_new and repeat

program. Actually Error_old keep

decreasing until finding a minimum. We

initialize Error_old to a large number.

Else, end program.

Worker_1 ……

Worker:

1. Calculate local error which is the

number of samples we got wrong for

each worker.

2. Send local error to the master code

Master

……

Worker_p

Error (p)

Error_new= Error (1) + Error (2) + … + Error (p)

Error _new <
Error_old

Error (1)

Master

T is the number of iteration,

for example, 25
T<25

Master Node:

Sum up local error and compared with the

minimum error Error_old

http://www.buffalo.edu/

9 Hui Li

 Experiment Setup

Parallel Implementation of Gradient Descent

• Dataset: NHANES -- National Health and Nutrition Examination Survey

(24, 000 × 9999) contains data of 24, 000 persons ages 2 months and older for

disease risk factor analysis.

• Master node is in charge of job distribution and collection. Worker do

computation.

• Experiment 1: # of node = 2 (fixed)

 # of PPN = 2,3,4,5,6,7, 8

• Experiment 2: # of PPN = 2 (fixed)

 # of node = 1,2,3,4,5,6,7,8

• We use 2,4,6, … 64 cores to set up the experiment and plot performance graph.

One core works as master node, is mainly in charge of collecting data. Other

cores do computation work.

http://www.buffalo.edu/

10 Hui Li

 Experiment Results -- fixing the number of node

Parallel Implementation of Gradient Descent

• # of ppn: from 2 to 8

• # of node: 2

• Total cores: (# of node) × (# of ppn)

http://www.buffalo.edu/

11 Hui Li

 Experiment Results -- fixing the number of node

Parallel Implementation of Gradient Descent

• # of ppn: from 2 to 8

• # of node: 2

• Total cores: (# of node) × (# of ppn)

http://www.buffalo.edu/

12 Hui Li

 Experiment Results -- fixing the number of ppn=2

Parallel Implementation of Gradient Descent

• # of ppn: 2

• # of node: from 1 to 8

• Total cores: (# of node) × (# of ppn)

http://www.buffalo.edu/

13 Hui Li

 Experiment Results -- fixing the number of ppn

Parallel Implementation of Gradient Descent

• # of ppn: 2

• # of node: from 1 to 8

• Total cores: (# of node) × (# of ppn)

http://www.buffalo.edu/

14 Hui Li

 Results Analysis

Parallel Implementation of Gradient Descent

of node # of PPN
of total

core Run time Speedup

2 2 4 630 3.635

2 3 6 417 5.492

2 4 8 318 7.201

2 5 10 264 8.674

2 6 12 237 9.662

2 7 14 214 10.700

2 8 16 437 5.240

of node # of PPN
of total

core Run time Speedup

2 2 4 640 3.578

3 2 6 399 5.739

4 2 8 292 7.842

5 2 10 239 9.582

6 2 12 204 11.225

7 2 14 368 6.223

8 2 16 457 5.011

• The bottom point is T(14)=214ms for the fixed node case. While the bottom point is

T(12)=204ms for the fixed PPN case.

• The fixed node running time is slight less than the fixed PPN case.

Conclusion: Intra-Node communication performance gives better performance than Inter-

Node communication for this dataset (24,000 samples)

Table1 : Experiment when fixing node number Table2 :Experiment when fixing PPN number

http://www.buffalo.edu/

15 Hui Li

 Experiment Result -- Unit iteration

Parallel Implementation of Gradient Descent

Program converges within different iterations. So to

measure our performances, we’d better provide the unit

iteration performance.

Core # Iteration # Running time (ms)

2 4 3344
4 4 1123
6 4 719
8 4 519

12 4 352
16 4 277
24 4 224
32 5 287
48 7 880
64 7 1226

http://www.buffalo.edu/

16 Hui Li

 Experiment Result -- Unit iteration

Parallel Implementation of Gradient Descent

http://www.buffalo.edu/

17 Hui Li

 Algorithm Improvement

Parallel Implementation of Gradient Descent

Improvement on Cost and Termination for

previous algorithm:

Instead of comparing the new error with

the old error, we fix iteration to 25 since

program always converges within 10

iterations. In each iteration, the Worker

calculates local gradient and local error

Error_i and the Master node updates the

parameter θj , saving the global error for

the ith iteration. After 25 iterations, we

choose the parameter which minimizes the

global error.

Worker_1 ……

Master

……

Worker_p

Updating θj using 𝒕𝒆𝒎𝒑𝒋

Error_i= Error (1) + Error (2) + … + Error (p)

𝒕𝒆𝒎𝒑𝒋
(𝟏)

Error (1)

Master

T<25

𝒕𝒆𝒎𝒑𝒋
(𝒑)

Error (p)

YES

No Find the min(

Error_i) and θj in

the ith iteration

http://www.buffalo.edu/

18 Hui Li

 Experiment Results for Algorithm Improvement

Parallel Implementation of Gradient Descent

http://www.buffalo.edu/

14 Hui Li

 Discussion

Questions
&

Answers

Parallel Implementation of Gradient Descent

http://www.buffalo.edu/

