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Variations of singular spectrum analysis for
separability improvement: non-orthogonal
decompositions of time series

Nina Golyandina, Alex Shlemov

Singular spectrum analysis (SSA) as a nonparametric tool
for decomposition of an observed time series into sum of in-
terpretable components such as trend, oscillations and noise
is considered. The separability of these series components by
SSA means the possibility of such decomposition. Two ex-
tensions of SSA, which weaken the separability conditions,
are proposed. One of the proposed approaches considers in-
ner products corresponding to oblique coordinate systems
instead of the conventional Euclidean inner product. The
other method changes contributions of the components by
involving the series derivative to avoid component mixing.
Performance of the suggested methods is demonstrated on
simulated and real-life data.
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1. INTRODUCTION

Singular spectrum analysis [4, 6, 7, 11, 13, 33, 34] is a
powerful method of time series analysis, which does not re-
quire a parametric model of the time series given in advance
and therefore SSA is very well suitable for exploratory anal-
ysis. After an exploratory analysis has been performed, SSA
enables to construct series models.

Singular spectrum analysis can solve very different prob-
lems in time series analysis which range from the series
decomposition on interpretable series components to fore-
casting, missing data imputation, parameter estimation and
many others. The main problem is the proper decomposi-
tion of the time series. For example, if one forecasts trend,
then this trend should be extracted properly. For seasonal
adjustment, the seasonality should be extracted correctly,
and so on.

In [11, 24], the separability theory, which is responsible
for the proper decomposition and proper component extrac-
tion, was developed. The separability of components means
that the method is able to extract the time series compo-
nents from the observed series that is the sum of many com-
ponents. At the present time, there is a lot of publications

with theory of separability and applications where separa-
bility is important, see [2, 3, 8, 9, 15, 16, 18, 19, 25, 27, 29]
among others.

For reasonable time series lengths and noise levels, trends,
oscillations and noise are approximately separable by SSA
[11, Sections 1.5 and 6.1]. However, the conditions of approx-
imate separability can be restrictive, especially, for short
time series.

The separability conditions are closely related to the
properties of the singular value decomposition (SVD), which
is the essential part of many statistical and signal process-
ing methods: principal component analysis [20], low-rank
approximations [22], different subspace-based methods [31]
including singular spectrum analysis among many others.
The main advantage of the SVD is its optimality features
and bi-orthogonality; the drawback for approximation prob-
lems is the non-uniqueness of the SVD expansion if there are
coinciding singular values.

In subspace-based methods, the SVD is applied to a tra-
jectory matrix with rows and columns consisting of subseries
of the initial series. In SSA, the obtained SVD components
are grouped and the grouped matrices are transferred back
to the series. Thus, we obtain a decomposition of the ini-
tial time series X into a sum of series components, e.g.,
X = S̃ + R̃. If we deal with a series X = S + R contain-
ing two series components S and R, which we want to find,
then (approximate) weak separability is by definition (ap-
proximate) orthogonality of subseries of S and R, which pro-
vides, due to the SVD bi-orthogonality, the existence of such
a grouping that S̃ and R̃ are (approximately) equal to S and
R correspondingly.

Non-uniqueness of the SVD in the case of coinciding sin-
gular values implies the condition of disjoint sets of singular
values in the groups corresponding to different series compo-
nents to avoid their possible mixture. This condition is nec-
essary to obtain the so called strong separability, when any
SVD of the trajectory matrix provides the proper grouping.
In practice, the strong separability is needed (see for more
details Section 2.2.1) and both conditions, orthogonality of
component subseries and disjoint sets of singular values of
component trajectory matrices, should be fulfilled.

The paper presents two methods, Iterative O-SSA and
DeriveSSA, which help to weaken the separability condi-
tions in SSA. For simplicity, we describe the methods for
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separation of two series components; separation of several
components can be considered in analogous manner.

Orthogonality of subseries can be a strong limitation on
the separated series. However, if we consider orthogonality
with respect to non-standard Euclidean inner product, con-
ditions of separability can be considerably weakened. This
yields the first method called Oblique SSA (O-SSA) with the
SVD step performed in a non-orthogonal coordinate system.
The idea of Iterative Oblique SSA is similar to prewhitening
that is frequently used in statistics as preprocessing: if we
know covariances between components, then we can perform
linear transformation and obtain uncorrelated components.
Since the ‘covariances’ of the components are not known
in advance, the iterative algorithm called Iterative Oblique
SSA is suggested. Contribution of the components can be
changed in a specific way during the iterations to improve
separability.

The second method called DerivSSA helps to change the
component contributions with no change of the structure of
the separated series components. The approach consists in
consideration of the series derivative together with the se-
ries itself. For example, two singular values produced by a
sinusoid are determined by its amplitude. The derivative of
a sine wave has the same frequency and changed amplitude,
depending on frequency: f(x) = sin(2πωx + φ) has ampli-
tude 1, while its derivative has amplitude 2πω. This is just a
simple example; the method works with non-stationary se-
ries, not only with sinusoids. The use of derivatives helps to
overcome the problem when the approximate orthogonality
holds but the series components mix due to equal contri-
butions. It seems that this approach is simpler and more
general than the SSA-ICA (SSA with Independent Compo-
nent Analysis) approach considered in [13, Section 2.5.4].

Since both suggested methods do not have approximat-
ing features, they cannot replace Basic SSA and therefore
should be used in a nested manner. This means that Basic
SSA extracts mixing series components (e.g. first we use
Basic SSA for denoising) and then one of the suggested
methods separates the mixing components. Let us demon-
strate the nested use of extensions by an example. Let X =
(x1, . . . , xN ) be the series of length N , X = X(1)+X(2)+X(3).

The result of Basic SSA is X = X̃(1,2) + X̃(3), the result of
the considered extension is X̃(1,2) = X̃(1) + X̃(2) and the final
result is X = X̃(1) + X̃(2) + X̃(3).

The paper is organized as follows. We start with a short
description of the algorithm of Basic SSA and standard sep-
arability notion (Section 2). The next two sections 3 and 4
are devoted to the extensions of singular spectrum analysis.
In Section 3, Oblique SSA is considered. In Section 4, SSA
involving series derivatives is investigated. Each section con-
tains numerical examples of algorithm application. In Sec-
tion 5, both methods are applied to real-life time series. The
implementation of the algorithms is performed with the help
of the Rssa package in R, see [10]. The implementation of

SSA in Rssa is very effective [21] and the considered ex-
tensions of SSA can be also efficiently implemented. Con-
clusions are contained in Section 6. Since the extensions are
based on the use of inner products and decompositions in
oblique coordinate systems, we put the necessary definitions
and statements into Appendix A.

2. BASIC SSA

2.1 Algorithm

Consider a real-valued time series X = XN =
(x1, . . . , xN ) of length N . Let L (1 < L < N) be some
integer called window length and K = N − L+ 1.

For convenience, denote ML,K the space of matrices of

size L×K, M
(H)
L,K the space of Hankel matrices of size L×K,

Xi = (xi, . . . , xi+L−1)T, i = 1, . . . ,K, the L-lagged vectors
and X = [X1 : . . . : XK ] the L-trajectory matrix of the
series XN . Define the embedding operator T : RN 7→ML,K

as T (XN ) = X.
Also introduce the projector H (in the Frobenius norm)

of ML,K to M
(H)
L,K , which performs the projection by the

change of entries on auxiliary diagonals i + j = const to
their averages along the diagonals.

The algorithm of Basic SSA consists of four steps.

1st step: Embedding. Choose L. Construct the L-
trajectory matrix: X = T (XN ).

2nd step: Singular value decomposition (SVD).
Consider the SVD of the trajectory matrix:

X =

d∑
i=1

√
λiUiV

T
i = X1 + . . .+ Xd,(1)

where
√
λi are singular values, Ui and Vi are the left and

right singular vectors of X, λ1 ≥ . . . ≥ λd > 0, d = rank(X).
The number d is called L-rank of the series X.

The triple (
√
λi, Ui, Vi) is called ith eigentriple (abbrevi-

ated as ET).

3rd step: Eigentriple grouping. The grouping proce-
dure partitions the set of indices {1, . . . , d} into m disjoint
subsets I1, . . . , Ip. This step is less formal. However, there
are different recommendations on grouping related to sepa-
rability issues briefly described in Section 2.2.1.

Define XI =
∑
i∈I Xi. The expansion (1) leads to the

decomposition

X = XI1 + . . .+ XIp .(2)

If p = d and Ij = {j}, j = 1, . . . , d, then the correspond-
ing grouping is called elementary.

4th step: Diagonal averaging. Obtain the series by

diagonal averaging of the matrix components of (2): X̃(k)
N =

T −1HXIk .
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Thus, the algorithm results in the decomposition of the
observed time series

XN =

p∑
k=1

X̃(k)
N .(3)

The reconstructed components produced by the elementary
grouping will be called elementary reconstructed series.

2.2 Separability by Basic SSA

Notion of separability is very important to understand

how SSA works. Separability of two time series X(1)
N and X(2)

N

signifies the possibility of extracting X(1)
N from the observed

series XN = X(1)
N + X(2)

N . This means that there exists a

grouping at Grouping step such that X̃(m)
N = X(m)

N .

Let us define the separability formally. Let X(m) be
the trajectory matrices of the considered series, X(m) =∑dm
i=1

√
λm,iUm,iV

T
m,i, m = 1, 2, be their SVDs. The col-

umn and row spaces of the trajectory matrices are called
column and row trajectory spaces correspondingly.

Definition 1. Let L be fixed. Two series X(1)
N and X(2)

N are
called weakly separable, if their column trajectory spaces
are orthogonal and the same is valid for their row trajec-
tory spaces, that is, (X(1))TX(2) = 0K,K and X(1)(X(2))T =
0L,L.

Definition 2. Two series X(1)
N and X(2)

N are called strongly
separable, if they are weakly separable and the sets of sin-
gular values of their L-trajectory matrices are disjoint, that
is, λ1,i 6= λ2,j for any i and j.

By definition, separability means orthogonality of the col-
umn and row spaces of the trajectory matrices of the series

components X(1)
N and X(2)

N . For approximate (asymptotic)

separability with X̃(m)
N ≈ X(m)

N we need the condition of
approximate (asymptotic) orthogonality of subseries of the
considered components. Asymptotic separability is consid-
ered as L,K,N → 0.

For sufficiently long time series, SSA can approximately
separate, for example, signal and noise, sine waves with dif-
ferent frequencies, trend and seasonality [11, 13].

Let us demonstrate the separability of two sinusoids with

frequencies ω1 and ω2: x
(i)
n = Ai cos(2πωin + φi). These

sinusoids are asymptotically separable, that is, their sub-
series are asymptotically orthogonal as their length tends to
infinity. However, the rate of convergence depends on the
difference between the frequencies. If they are close and the
time series length is not long enough, the series can be far
from orthogonal and therefore not separable.

Weak separability means that at SVD step there exists
such an SVD that admits the proper grouping. The problem
of possibility of an wrong SVD extension is related to non-
uniqueness of the SVD in the case of equal singular values.

Strong separability means that any SVD of the series trajec-
tory matrix admits the proper grouping. Therefore, we need
strong (approximate) separability for the use in practice. For
example, two sinusoids with equal amplitudes are asymp-
totically weakly separated, but asymptotically not strongly
separated and therefore are mixed in the decomposition.

2.2.1 Separability measure

Very helpful information for detection of separability
and group identification is contained in the so-called w-
correlation matrix. This matrix consists of weighted cosines
of angles between the reconstructed time series components.
The weights reflect the number of entries of the time series
terms into its trajectory matrix.

Let wn = #{(i, j) : 1 ≤ i ≤ L, 1 ≤ j ≤ K, i+ j = n+ 1}.
Define the w-scalar product of time series of length N as
(YN ,ZN )w =

∑N
n=1 wnynzn = 〈Y,Z〉F. Then

ρw(YN ,ZN ) = (YN ,ZN )w/(‖YN‖w‖ZN‖w).

Well separated components in (3) have small correla-
tion whereas poorly separated components generally have
large correlation. Therefore, looking at the matrix of w-

correlations between elementary reconstructed series X̃(i)
N

and X̃(j)
N one can find groups of correlated series compo-

nents and use this information for the consequent grouping.
One of the rules is not to include the correlated components
into different groups. Also, w-correlations can be used for
checking the grouped decomposition.

It is convenient to depict in absolute magnitude the ma-
trix of w-correlations between the series components graph-
ically in the white-black scale, where small correlations are
shown in white, while correlations with moduli close to 1
are shown in black.

2.2.2 Scheme of Basic SSA application

Let us briefly describe the general scheme of Basic SSA
application, thoroughly described in [11, 13]:

• Choice of window length L in accordance with a-priori
recommendations (see, in addition, [9]).

• Execution of Embedding and Decomposition steps.
• Analysis of the eigentriples and the w-correlation ma-

trix to perform grouping of eigentriples. The main prin-
ciple is: eigenvectors repeat the form of a series compo-
nent that produces these eigentriples. w-Correlations
also provide a guess for proper grouping.

• Execution of Grouping and Reconstruction steps to ob-
tain the desired series decomposition.

• If separability does not take place for the given L and
the obtained decomposition is not appropriate, then the
change of the window length L is recommended.

Note that the proper grouping to obtain a suitable se-
ries decomposition can be impossible if the signal compo-
nents (described, as a rule, by a number of leading SVD
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components) are mixed. For example, if a signal eigenvec-
tor contains both periodic and slowly varying components,
this means that the trend and periodic components are not
separable, at least for the chosen window length L. If we
see the mixture of two sine-waves with different frequencies,
this means that these sine-waves are not separable for this
L.

If it appears that for the chosen L there is no separabil-
ity (weak or strong), the attempt to obtain separability is
performed with other choices of L. For example, a possible
lack of strong separability between a trend of complex form
and a seasonality can be overcome by means of the use of
small window lengths. However, weak separability can be
weakened by this trick and Sequential SSA should be used
to obtain an accurate decomposition of the residual after
the trend extraction.

For the majority of time series, SSA with a proper choice
of window length is able to separate series components and
to obtain a desirable series decomposition. However, some-
times Basic SSA cannot separate components, e.g. short sine
wave series with close frequencies or sine waves with equal
amplitudes.

2.2.3 Identification of separated sinusoids

Separation of sine-wave components is of special interest.
Each sine-wave component generates two elementary series
components, which have correlation close to 1. If a sinusoid
is separated from the residual, maybe, approximately, then
two elementary components produced by it are almost not
correlated with the other elementary components and there-
fore we will see a black square 2 × 2 on the w-correlation
matrix of elementary components.

To find two SVD components corresponding to a sine-
wave, scatterplots of eigenvectors (which are approximately
sine and cosine) can be also used. If the period value is
integer, the scatterplot of sine vs cosine looks like a regular
polygon, where the number of vertices is equal to the period.
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Figure 1. Sum of two sinusoids: w-correlation matrices for
different types of separability

For example, consider the series XN , where xn = x
(1)
n +

x
(2)
n , x

(k)
n = Ak sin(2πωkn), the series length N = 119, with

three different sets of parameters:
(A) ‘strong separability’, A1 = 2, A2 = 1, ω1 = 1/12, ω2 =
1/10;

1 vs 2 2 vs 3 3 vs 4 1 vs 2 2 vs 3 3 vs 4

Figure 2. Sum of two sinusoids: scatterplots of eigenvectors
with good (left) and bad (right) separability

(B) ’weak separability, no strong separability’, A1 = A2 = 1,
ω1 = 1/12, ω2 = 1/10;
(C) ’no weak separability’, A1 = 2, A2 = 1, ω1 = 1/12,
ω1 = 1/13, the series is corrupted by Gaussian white noise
with standard deviation 4.

The difference between good and bad separability is
clearly seen in Fig. 1 and 2. One can see that the matri-
ces of weighted correlations for the examples (B) and (C)
are very similar, although in general weighted correlations
for the example (B) can be arbitrary. Figure 2 shows the
scatterplots of eigenvectors for the examples (A) and (C).
The pairs of eigenvectors produced by exactly separated si-
nusoids form regular polygons.

2.3 Series of finite rank and series governed
by linear recurrence relations

Let us describe the class of series of finite rank, which
is natural for SSA. Note that only such time series can be
exactly separated and exactly continued by SSA [11, Section
2.2 and Chapter 5].

We define L-rank of a series XN as the rank of its L-
trajectory matrix. Series with rank-deficient trajectory ma-
trices are of special interest. A time series is called time
series of finite rank r if its L-trajectory matrix has rank r
for any L ≥ r (it is convenient to assume that L ≤ K).

Under some not restrictive conditions, a series SN of finite
rank r is governed by a linear recurrence relation (LRR) of
order r, that is

si+r =

r∑
k=1

aksi+r−k, 1 ≤ i ≤ N − r, ar 6= 0.(4)

The LRR (4) is called minimal, since it is unique and has
minimal order among LRRs governing SN . Let us describe
how we can restore the form of the time series by means of
the minimal LRR.

Definition 3. A polynomial Pr(µ) = µr −
∑r
k=1 akµ

r−k is
called a characteristic polynomial of the LRR (4).

Let the time series S∞ = (s1, . . . , sn, . . .) satisfy the LRR
(4) for i ≥ 1. Consider the characteristic polynomial of
the LRR (4) and denote its different (complex) roots by
µ1, . . . , µp, where p ≤ r. All these roots are non-zero, since
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ar 6= 0. Let the multiplicity of the root µm be km, where
1 ≤ m ≤ p and k1 + . . . + kp = r. We will call the set
{µj}pm=1 characteristic (or signal) roots of the series gov-
erned by an LRR. Note that in the framework of SSA non-
minimal LRRs, which have so called extraneous roots in
addition to the signal ones, are considered and the extrane-
ous roots are studied ([30]); however, here we will deal only
with characteristic roots to describe the signal model.

It is well-known that the time series S∞ = (s1, . . . , sn, . . .)
satisfies the LRR (4) for all i ≥ 0 if and only if

sn =

p∑
m=1

km−1∑
j=0

cm,jn
j

µnm.(5)

for some cm,j ∈ C. For real-valued time series, (5) implies
that the class of time series governed by LRRs consists of
sums of products of polynomials, exponentials and sinusoids.

The important advantage of SSA is that although the
model (5) of signals is involved in theoretical results, the
SSA algorithm does not perform explicit estimation of the
model parameters for reconstruction and forecasting. This
provides the possibility to deal with signals that are locally
approximated by the model; in particular, to extract slowly-
varying trends and modulated sine waves. The indicated fea-
ture of the SSA approach holds for the extensions considered
below.

3. OBLIQUE SSA

Although many interpretable series components like
trend (a slowly varying component) and seasonality are
asymptotically orthogonal, for the given time series length
the orthogonality can be not reached even approximately.
Therefore, it would be helpful to weaken the orthogonality
condition. The suggested approach consists in using an or-
thogonality, which still means the equality of an inner prod-
uct to 0, but this is a non-ordinary inner product which is
adapted to time series components, which we want to sepa-
rate.

It is well-known that any inner product in Euclidean
space is associated with a symmetric positive-definite matrix
A and is defined as 〈X1, X2〉A = (AX1, X2). The standard
inner product is given by the identity matrix. Inner prod-
uct implies A-orthogonality of the vectors if 〈X1, X2〉A = 0.
If the matrix A is semi-definite, then it produces the inner
product given in its column (or row, it is the same due to
symmetry) space. Below, considering 〈X1, X2〉A, we will al-
ways assume that the vectors Xi, i = 1, 2, belong to the
column space of A.

Thus, non-standard Euclidean inner products induce such
notions as oblique coordinate systems, orthogonality of vec-
tors, which are oblique in ordinary sense, and so on.

Let us present an elementary example. Let X = (1, 2)T

and Y = (1, 1)T. Certainly, these vectors are not orthogonal

in the usual sense: (X,Y ) = 3. However, if we define

(6) A =

(
5 −3
−3 2

)
,

then 〈X,Y 〉A = (AX,Y ) = 0 and (OAX,OAY ) = 0 for
any OA such that OT

AOA = A, e.g.

OA =

(
−1 1

2 −1

)
.

This means that {X,Y } is an orthogonal basis with respect
to the A-inner product 〈·, ·〉A and OA corresponds to an
orthogonalizing map. The matrix A can be chosen such that
X and Y have any A-norm. The choice (6) corresponds to
A-orthonormality.

To describe a so called Oblique SSA, let us intro-
duce the SVD of a matrix X produced by two oblique
bases, L-orthonormal and R-orthonormal correspondingly,
in the row and column spaces (Definition 6). We say that

X =
∑d
i=1 σiPiQ

T
i is the (L,R)-SVD, if {Pi}di=1 is an L-

orthonormal system and {Qi}di=1 is an R-orthonormal sys-
tem, that is, the decomposition is (L,R)-biorthogonal. This
kind of SVD is called Restricted SVD (RSVD) given by the
triple (X,L,R), see [23] for details. Mathematics related to
inner products 〈·, ·〉A with positive-semidefinite matrix A
and the corresponding RSVD is shortly described in Ap-
pendix A from the viewpoint of decompositions into a sum
of elementary matrices. We formulate the necessary defini-
tions and propositions in a convenient form to make the
suggested algorithms clearer.

Oblique SSA (O-SSA) is the modification of the Basic
SSA algorithm described in Section 2, where the SVD step
is changed by the (L,R)-SVD for some matrices L and R
consistent with X (see Definition 7). We will use the notions
introduced in the algorithm of Basic SSA also for its oblique
modification.

Proposition 4 provides the algorithm which reduces the
(L,R)-SVD to the ordinary SVD.

Algorithm 1. ((L,R)-SVD.)

Input: Y, (L,R) consistent with Y.

Output: The (L,R)-SVD in the form (8).

1. Calculate OL and OR, e.g., by Cholesky decomposi-
tion.

2. Calculate OLYOT
R.

3. Find the ordinary SVD decomposition (10).

4. σi =
√
λi, Pi = O†LUi and Qi = O†RVi. where † denotes

pseudo-inverse.

Note that if L and R are the identity matrices, then
Oblique SSA coincides with Basic SSA, σi =

√
λi, Pi = Ui

and Qi = Vi.
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3.1 Separability

The notion of weak and strong (L,R)-separability, which
is similar to conventional separability described in Sec-
tion 2.2.1, can be introduced. Again, let X = X(1) + X(2),
X be its trajectory matrix, X(m) be the trajectory matri-
ces of the series components, X(m) =

∑rm
i=1 σm,iPm,iQ

T
m,i be

their (L,R)-SVDs, m = 1, 2. We assume that L and R are
consistent with X, X(1) and X(2).

Definition 4. Let L be fixed. Two series X(1)
N and X(2)

N

are called weakly (L,R)-separable, if their column tra-
jectory spaces are L-orthogonal and their row trajectory
spaces are R-orthogonal, that is, (X(1))TLX(2) = 0K,K and
X(1)R(X(2))T = 0L,L.

Definition 5. Two series X(1)
N and X(2)

N are called strongly
(L,R)-separable, if they are weakly (L,R)-separable and
σ1,i 6= σ2,j for any i and j.

The (L,R)-separability of two series components means
L-orthogonality of their subseries of length L and R-
orthogonality of the subseries of length K = N − L+ 1.

The following theorem shows that the (L,R)-separability
is in a sense much less restrictive than the ordinary one.

Theorem 1. Let X = X(1) +X(2) be the series of length N ,
L be the window length and the L-rank of X be equal to r. Let
X(m) be the series of L-rank rm, m = 1, 2, r1 +r2 = r. Then
there exist separating matrices L ∈ ML,L and R ∈ MK,K

of rank r such that the series X(1) and X(2) are strongly
(L,R)-separable.

Proof. Denote {P (m)
i }rmi=1 a basis of the column space of

X(m) and {Q(m)
i }rmi=1 a basis of the row space of X(m),

m = 1, 2; e.g., P
(m)
i = Pm,i ∈ RL, Q

(m)
i = Qm,i ∈ RK .

Define

P = [P
(1)
1 : . . . : P (1)

r1 : P
(2)
1 : . . . : P (2)

r2 ],

Q = [Q
(1)
1 : . . . : Q(1)

r1 : Q
(2)
1 : . . . : Q(2)

r2 ].

By the theorem conditions, the matrices P and Q are of
full rank. Since P† and Q† orthonormalize the columns of
the matrices P and Q (Proposition 2), then the trajectory
matrices X(1) and X(2) are (L,R) bi-orthogonal for L =
(P†)TP† and R = (Q†)TQ†. Therefore the series X(1) and
X(2) are (L,R)-separable.

Proposition 5 shows that it is possible to change σm,i
keeping bi-orthogonality, that is, it explains how to get
strong separability not corrupting weak one.

Remark 1. Consider two time series governed by mini-
mal LRRs of orders r1 and r2, r1 + r2 ≤ min(L,K). The
conditions of Theorem 1 fulfill if and only if the sets of char-
acteristic roots of the series are disjoint. Really, the sets of
characteristic roots are disjoint if and only if the column
and row spaces of L-trajectory matrices intersect only in
{0}, that is, P and Q are of full rank.

Remark 2. Theorem 1 together with Remark 1 shows that
any two times series governed by LRRs with different char-
acteristic roots can be separated by some (L,R)-SVD for
sufficiently large series and window lengths.

Note that Theorem 1 is not constructive, since the trajec-
tory spaces of the separated series should be known for exact
separation. However, we can try to estimate these spaces and
thereby to improve the separability.

Measures of oblique separability. If Oblique SSA
does not separate the components exactly, a measure of sep-
arability is necessary. We can consider the analogue of w-
correlations described in Section 2.2.1, since they are defined
through the Frobenius inner products of trajectory matrices
and therefore can be generalized; see Appendix A.3 for def-
inition of ρL,R in (12). Define (L,R) w-correlation between

the reconstructed series X̃(1) and X̃(2) as ρL,R(X̃(1), X̃(2)).
Note that due to diagonal averaging, the column and row
spaces of X̃(m) do not necessarily belong to the column
spaces of L and R correspondingly, that is, matrices L and
R can be not consistent with X̃(m), m = 1, 2. Therefore,
ρL,R takes into consideration only projections of columns

and rows of X̃(1) and X̃(2) on the column spaces of L and
R (Remark 8). This means that ρL,R can overestimate the
separability accuracy.

For Oblique SSA, when only one of coordinate systems
(left or right) is oblique, the conventional w-correlations be-
tween series are more appropriate measures of separability,
since in the case of exact oblique separability we have or-
thogonal (in the Frobenius inner product) matrix compo-
nents (Corollary 1).

Other important measure of proper separability is the
closeness of the reconstructed series components to time se-
ries of finite rank. This can be measured by the contribution
of the leading rm = |Im| eigentriples into the SVD of the tra-

jectory matrix X̃(m) of the mth reconstructed series compo-
nent X̃(m). If we denote λ̃m,i the eigenvalues of the ordinary

SVD of X̃(m), then τrm(X̃(m)) = 1 −
∑rm
i=1 λ̃m,i/‖X̃(m)‖2

reflects the closeness of the mth series to the series of rank
rm.

3.2 Nested Oblique SSA

Rather than the ordinary SVD, the SVD with respect to
non-orthogonal coordinate systems provides approximation
in an inappropriate way. That is why Oblique SSA cannot be
used for extraction of the leading components, in particular,
for extraction of the signal and for denoising.

Therefore, the nested way of using Oblique SSA is sug-
gested. The approach is somewhat similar to factor analysis,
where a factor space can be estimated by principal compo-
nent analysis and then interpretable factors are extracted
from the factor space.

Suppose that Basic SSA can extract the signal but cannot
separate the signal components. For example, let the time
series consist of a noisy sum of two sinusoids. Then Basic
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SSA can perform denoising but probably cannot separate
these sinusoids, if their frequencies are close. Thus, Basic
SSA is used for estimation of the subspace of the sum of
sinusoids and then some other method can be used to sepa-
rate the sinusoids themselves. The choice of parameters for
better separation is thoroughly investigated in [9]. Note that
the nested approach is similar to the refined grouping used
in [13, Section 2.5.4] for the SSA-ICA algorithm.

Thus, let us apply Basic SSA with proper parameters and
let a matrix decomposition X = XI1 + . . .+XIp be obtained
at Grouping step of Basic SSA; each group corresponds to a
separated time series component. Let the sth group I = Is
be chosen for a refined decomposition. Denote Y = XI ,
r = rank Y, Y = T −1HY the series obtained from Y by
diagonal averaging.

Algorithm 2. (Nested Oblique SSA.)

Input : The matrix Y, matrices (L,R), which are consistent
with Y (see Definition 7).

Output : a refined series decomposition Y = Ỹ(1) + . . .+ Ỹ(l).

1. Construct an (L,R)-SVD of Y by Algorithm 1 in the
form

Y =

r∑
i=1

σiPiQ
T
i .

2. Partition the set {1, . . . , r} =
⊔l
m=1 Jm and perform

grouping to obtain a refined matrix decomposition Y =
YJ1 + . . .+ YJl .

3. Obtain a refined series decomposition Y = Ỹ(1) + . . .+
Ỹ(l), where Ỹ(m) = T −1HYJm .

Thus, after application of Algorithm 2 to the group Is,
we obtain the following decomposition of the series X:

X = X̃(1) + . . .+ X̃(p), where X̃(s) = Ỹ(1) + . . .+ Ỹ(l).

For simplicity, below we will consider the case l = 2.

3.3 Iterative O-SSA

Let us describe an iterative version of Algorithm 2, that
is, an iterative algorithm for obtaininig appropriate matri-
ces L and R for the (L,R)-SVD of XI . For proper use of
nested decompositions, we should expect that the matrix
XI is close to a rank-deficient trajectory matrix of rank r.

To explain the main point of the method, assume that
XI = Y is the trajectory matrix of Y. Let Y = Y(1) + Y(2)

and the trajectory matrices Y1 and Y2 be of ranks r1 and r2,
r1+r2 = r. Then by Theorem 1 there exist r-rank separating
matrices L∗, R∗ of sizes L× L and K ×K correspondingly
and a partition {1, . . . , r} = J1tJ2 such that we can perform
the proper grouping in the (L∗,R∗)-SVD and thereby obtain
YJ1 = Y1 and YJ2 = Y2.

Unfortunately, we do not know L∗ and R∗, since they are
determined by unknown trajectory spaces of Y(1) and Y(2).

Therefore, we want to construct the sequence of (L,R)-SVD
decompositions (8), which in some sense converges to the
separating decomposition.

Let us have an initial (L(0),R(0))-SVD decomposition of
Y and group its components to obtain some initial estimates
Ỹ(1,0) and Ỹ(2,0) of Y(1) and Y(2). Then we can use the tra-
jectory spaces of Ỹ(1,0) and Ỹ(2,0) to construct the new inner
product which is expected to be closer to the separating one.
Therefore, we can expect that Ỹ(1,1) and Ỹ(2,1) will be closer
to Y(1) and Y(2) and therefore we take their trajectory spaces
to construct a new inner product; and so on. Certainly, if the
initial decomposition is strongly separating, then we obtain
that Ỹ(m,1) = Ỹ(m,0) = Y(m), m = 1, 2.

3.3.1 Basic algorithm

We call the iterative version of Algorithm 2 (Nested
Oblique SSA) as Iterative Oblique SSA or Iterative O-SSA.

Algorithm 3. (Scheme of Iterative O-SSA.)

Input: The matrix Y of rank r, which is the input matrix for
Algorithm 2, a partition {1, . . . , r} = J1tJ2, rm = |Jm|, the
accuracy ε and the maximal number of iterations M . Also
we should choose a pair of matrices (L(0),R(0)), consistent
with Y as initial data.

Together with the partition, the matrices provide the de-

compositions Y = Y
(0)
J1

+ Y
(0)
J2

and Y = Ỹ(1,0) + Ỹ(2,0).

Output: Y = Ỹ(1) + Ỹ(2).

1. k = 1.
2. Call of Algorithm for calculation of (L(k),R(k)) consis-

tent with Y.
3. Construct the (L(k),R(k))-SVD of Y:

(7) Y =

r∑
i=1

σ
(k)
i P

(k)
i (Q

(k)
i )T = Y

(k)
J1

+ Y
(k)
J2
.

4. Obtain the decomposition of the series Y = Ỹ(1,k) +

Ỹ(2,k), where Ỹ(m,k) = T −1HY
(k)
Jm

, m = 1, 2.

5. If k ≥M or max(‖Ỹ(m,k) − Ỹ(m,k−1)‖2/N,m = 1, 2) <

ε2, then Ỹm) = Ỹ(m,k), m = 1, 2, and STOP; else k ←
k + 1 and go to step 2.

Remark 3. Note that the initial matrices (L(0),R(0)) can
be chosen such that the initial decomposition (7) for k =
0 is a part of the SVD (1) and thereby coincides with the
ordinary SVD of Y, that is, L(0) and R(0) are the identity
matrices. Then the partition can be performed as follows. In
the decomposition (1), we can choose two sets of eigentriple
numbers and consider their union as I. The chosen sets of
numbers automatically generate the partition J1 t J2. For
example, if two groups, ET2,8 and ET3–6, are chosen, then
I = {2, 3, 4, 5, 6, 8}, r = 6, J1 = {1, 6}, J2 = {2, 3, 4, 5}.
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To finalize Algorithm 3, we should present the algorithm
for step 2. Define Πcol the orthogonal projection operator
(in the ordinary sense) on the column space of Y, Πrow the
projection operator on the row space of Y.

Algorithm 4. (Calculation of (L(k),R(k)).)

Input : The partition {1, . . . , r} = J1 t J2, rm = |Jm|, the
pair of matrices (L(k−1),R(k−1)).

Output : The pair of matrices (L(k),R(k)).

1. Calculate Ỹm = HY
(k−1)
Jm

, m = 1, 2.
2. Construct the ordinary SVDs:

Ỹm =

dm∑
i=1

√
λ
(m)
i U

(m)
i (V

(m)
i )T, m = 1, 2,

(we need the first rm terms only).

3. Find the projections Û
(m)
i = ΠcolU

(m)
i and V̂

(m)
i =

ΠrowV
(m)
i for i = 1, . . . , rm, m = 1, 2. Denote

Û(m) = [Û
(m)
1 : . . . : Û (m)

rm ], V̂(m) = [V̂
(m)
1 : . . . : V̂ (m)

rm ].

4. Calculate L(k) = (Û†)TÛ† and R(k) = (V̂†)TV̂†,

where Û = [Û(1) : Û(2)] and V̂ = [V̂(1) : V̂(2)].

Note that we assume that the matrices Û(m) and V̂(m)

obtained at step 3 are of full rank; otherwise, the algorithm
does not work.

For the constructed iterative Algorithm 3, the conver-
gence Ỹ(1,k) and Ỹ(2,k) to some series Y(1) and Y(2) is not
proved theoretically; however, numerical experiments con-
firm the convergence for the most of reasonable examples.

Let us shortly discuss why one can expect the conver-
gence of the iterations to the proper decomposition. First,
note that Iterative O-SSA does not change the separating
decomposition, that is, the separating decomposition is a
fixed point of the algorithm. Then, the separating decompo-
sition Y = Y1 + Y2 should satisfy the following properties:
(1) Y1 and Y2 are Hankel;
(2) rank Y1 = r1, rank Y2 = r2;
(3) the column and row spaces of Y1 and Y2 lie in the col-
umn and row spaces of Y;
(4) Y1 and Y2 are (L,R) bi-orthogonal for L = L∗ and
R = R∗.

Each iteration consequently tries to meet these proper-
ties:
(1) hankelization at step 1 is the orthogonal projection on
the set of Hankel matrices;
(2) taking the rm leading components in the SVDs of series
(step 2) performs the low-rank projections;
(3) there is the step 3 of projection on the row and column
spaces of Y;
(4) the choice of (L,R)-inner products at step 4 makes the
matrices bi-orthogonal.

3.3.2 Modification with sigma-correction

If the initial point for iterations is not far from the sep-
arating pair (L∗, R∗), we can expect that the convergence
will take place, since we are close to the fixed-point value

and we can expect that σ
(k)
i are changed slightly. However,

in general, a possible reordering of the decomposition com-
ponents between iterations of Iterative O-SSA can interfere
convergence. The case of J1 = {1, . . . , r1}, when the mini-
mal singular value σr1 of the first series is kept essentially
larger than the maximal singular value σr1+1 of the second
series, would provide safety.

Let us describe the modification of Iterative O-SSA that
provides reordering of the components, moves them apart
and thereby relaxes the problem of mixture of components.
Modification consists in an adjustment of calculation of Û(2)

and V̂(2) at step 3 of Algorithm 4.

Algorithm 5. (Modification of Algorithm 4.)

Input and Output are the same as in Algorithm 4 except for
an additional parameter κ > 1 called the separating factor.

The algorithm is the same except for an additional step 3a
after step 3.

3a: If λ
(1)
r1 < κ2λ

(2)
1 at step 2 of Algorithm 4, then define µ =

κ
√
λ
(2)
1 /λ

(1)
r1 and change Û(2) ← √µÛ(2), V̂(2) ← √µV̂(2).

Due to reordering, put J1 = {1, . . . , r1}, J2 = {r1+1, . . . , r}.

Note that the adjustment implicitly leads to the change
of the order of matrix components in (7), since they are or-

dered by σ
(k)
i . Thereby we force an increase of the matrix

components related to the first series component. Proposi-
tion 5 explains this adjustment.

Remark 4. The reordering procedure is fulfilled by sequen-
tial adjustment of the component weights and therefore de-
pends on the component enumeration.

Note that the described correction can help to provide
the strong separability if the weak one takes place.

3.4 Separability of sine waves with close
frequencies

3.4.1 Noise-free cases

Let us consider the sum of two sinusoids xn =
sin(2πω1n) + A sin(2πω2n), n = 1, . . . , N , N = 150, with
close frequencies ω1 = 0.065 and ω2 = 0.06 and unequal
amplitudes, 1 and A = 1.2. Let the window length L = 70.
Since sinusoids with such close frequencies are far from be-
ing orthogonal for the considered window and series lengths,
Basic SSA cannot separate them, see Fig. 3 (top) where the
result of the Basic SSA decomposition is depicted.

To separate the sinusoids we apply the Iterative O-SSA
algorithm (Algorithm 3) with no sigma-correction, ε = 10−5

and two groups ET1–2 and ET3–4. The maximal number
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M of iterations was taken very large and therefore was not
reached. Decomposition after Iterative O-SSA is depicted in
Fig. 3 (bottom).
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Figure 3. Sum of two sinusoids with close frequencies:
decomposition by Basic SSA and Iterative O-SSA

Let us apply the measures of separability described in
Section 3.1. Note that the conventional w-correlations do
not reflect the quality of decomposition. For the initial de-
composition we have 0.08. After Iterative O-SSA the w-
correlation becomes to be equal to −0.44, while (L,R) w-
correlation is almost 0. The last result confirms that the
method separates harmonics exactly. Other measure of true
decomposition is the closeness of the components to series of
finite ranks. Since the ranks should be equal to the number
of the components in the chosen groups, we can calculate
the proportion of the corresponding number of the leading
components in their SVD decompositions. The mean pro-
portion (0.5(τr1(X(1)) + τr2(X(2))) is changed from 0.06 to
almost 0.

Let us fix ω2 = 0.06. Then for ω1 = 0.065 the algorithm
stops after 113 iterations, for ω1 = 0.07 the number of iter-
ations is equal to 26, for ω1 = 0.08 it is equal to just 6; see
blue line in Fig. 5 (top).

Note that we do not need to use the sigma-correction,
since the sinusoids have different amplitudes.

If we consider equal amplitudes with A = 1 and take
κ = 2 (Algorithm 5), then Iterative O-SSA still converges
even for ω2 = 0.065 (191 iterations) to the true solution.

3.4.2 Nested separability in presence of noise

Let us add noise to the sum of two sinusoids and take
xn = sin(2πω1n)+A sin(2πω2n)+δεn with close frequencies
ω1 = 0.07 and ω2 = 0.06 and unequal amplitudes, 1 and
A = 1.2. Here εn is white Gaussian noise with variance 1,
δ = 1. Let again N = 150, L = 70.

Basic SSA well separates the sinusoids from noise, but
cannot separate these sinusoids themselves. Thus, Iterative
O-SSA applied to the estimated signal subspace should be
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Figure 4. Noisy sum of two sinusoids with close frequencies:
decomposition by Basic SSA and Iterative O-SSA

used. We use the sigma-correction with κ = 2, since the dif-
ference between amplitudes, 1 and 1.2, appears to be small
for strong separability in presence of noise. As before, we set
the initial grouping ET1–2 and ET3–4.
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Figure 5. Dependence of number of iterations (top) and
RMSE errors of frequency estimations (bottom) on ω1 for

ω2 = 0.6

The decomposition by Basic SSA at top and by Iterative
O-SSA at bottom is depicted in Fig. 4. The number of iter-
ations is equal to 32, what is just slightly larger than 26 in
the noiseless case.

Let us investigate the dependence of number of iterations
on ω1 with the fixed ω2 = 0.06. We change ω1 from 0.03 to
0.059 and from 0.061 to 0.1. Fig. 5 (top) shows the num-
ber of iterations for noiseless signal (blue line) and the esti-
mated mean number of iterations for the noisy signal (red
line); the number of repetitions equals 1000, 5% winsorized
estimates of means were calculated. Note that the number
of iterations was limited by 200, although for the pure sig-
nal convergence held for each ω1 from the considered set.

Variations of SSA for separability improvement: non-orthogonal decompositions 9



A surprisingly small number of iterations for the noisy sig-
nal and close frequencies is explained by convergence to an
wrong limit, see Fig. 5 (bottom) with root mean square er-
rors of LS-ESPRIT estimates for ω1 and ω2 based on the
subspaces spanned by eigenvectors from ET1–2 and ET3–4
(see, e.g., [28] or [13, Section 2.8.2] for the ESPRIT algo-
rithms). Since we use the nested decomposition, the noise
slightly influences the reconstruction accuracy for frequen-
cies that are quite different (ω1 smaller than 0.048 and larger
than 0.072).

4. SSA WITH DERIVATIVES. EXTENSION
FOR STRONG SEPARABILITY

In this section we describe an extension of SSA that helps
to overcome the problem of lack of strong separability if
weak separability holds.

Recall that the lack of strong separability of two series
components is caused by equal singular values in the sets
of the singular values generated by each of time series. In
turn, the singular values depends on coefficients A1 and A2

before the series components in the sum A1s
(1)
n + A2s

(2)
n .

The question is how to change the coefficients A1 and A2

in conditions of unknown s
(1)
n and s

(2)
n to make the singular

values different.

It seems that the most natural approach is to use the
derivative of the time series in order to change the coeffi-
cients and not to change the component subspaces. For ex-
ample, if xn = A sin(2πωn+φ), then x′n = 2πωA cos(2πωn+
φ), that is, the coefficient A′ = 2πωA. If we take two si-
nusoids with different frequencies, then derivation changes
their amplitudes differently. For xn = Aeαn, derivation
also changes the coefficient before the exponential, since
x′n = αAeαn, and preserves the rate. For the most of series
of finite rank, the derivative subspace coincides with the se-
ries subspace. The exception is polynomial series, when the
derivative subspace is a subset of the initial subspace.

Certainly, since we deal with discrete time, we consider
ϕn(X) = xn+1 − xn instead of derivative. However, the ap-
proach of taking differences works. For example, for series
X = XN of length N with xn = A sin(2πωn + φ), we ob-
tain the series ΦN−1(X) = (ϕ1(X), . . . , ϕN−1(X)) of length
N − 1 with ϕn(X) = 2 sin(πω)A cos(2πωn + πω + φ); for
xn = Aeαn, we obtain ϕn(X) = (eα − 1)Aeαn.

Thus, we can combine the initial series and its deriva-
tive to imbalance the component contribution and therefore
to obtain their strong separability. For sinusoids, the smaller
the period, the larger the increase of the sinusoid amplitude.
Therefore, derivation increases the contribution of high fre-
quencies. This effect can increase the level of the noise com-
ponent, if the series is corrupted by noise. Hence, the nested
version of the method implementation should be produced;
in particular, the noise component should be removed by
Basic SSA in advance.

Remark 5. The approach involving derivatives (that is, se-
quential differences) can be naturally extended to considering
an arbitrary linear filtration ϕ instead of taking sequential
differences. It this paper we deal with derivatives, since this
particular case is simple and has very useful applications.

In Section 4.1 we consider the initial series and its deriva-
tive together as two series, regulating the contribution of the
derivative, and apply then the multivariate version of SSA.
Section 4.2 transforms this approach to a special nested ver-
sion of Oblique SSA called DerivSSA.

4.1 SSA with derivatives as MSSA

Let us consider the system of two time series
(XN , γΦN−1(X)) and apply Multivariate SSA (MSSA).

The MSSA algorithm can be found, for example, in [6,
12] for time series of equal lengths. However, it is naturally
extended to different lengths. In particular, MSSA for time
series of different lengths is described in [5, Section III.2]
and [14].

In MSSA, the embedding operator T transfers two time
series (XN1

,YN2
) to the stacked L-trajectory matrix [X :

Y]. That is, the only difference with Basic SSA consists in
the construction of the embedding operator T .

Let XN = X(1)
N +X(2)

N and X(1)
N and X(2)

N be of finite rank
and approximately separable. Therefore their row and col-
umn trajectory spaces are approximately orthogonal. Then
the same is valid for ΦN−1(X(1)) and ΦN−1(X(2)) in view
of the fact that their column spaces belongs to the col-

umn spaces of X(1)
N and X(2)

N , while their row spaces are
spanned by vectors of the same structure that the vectors

constituting bases of the row spaces of X(1)
N and X(2)

N , ex-
cept for these basis vectors has length K − 1 instead of
K. Therefore, approximate orthogonality still hold. Since
ΦN−1(X) = ΦN−1(X(1)) + ΦN−1(X(2)), MSSA applied to
(XN , γΦN−1(X)) will approximately separate the time series

X(1)
N and X(2)

N . Certainly, we will not have exact separability;
however, it is not so important for practice.

As it was mentioned before, a drawback of the described
approach is that the method cannot be applied to noisy
series, since it intensifies high-frequency harmonics and
therefore strengthens noise. Therefore, denoising should be
applied as preprocessing. Also, SSA involving derivatives
changes component contributions (this is what we want) but
simultaneously the method loses approximation features.
These reasons lead to the necessity to use the nested way of
decomposition introduced in Section 3.2.

4.2 Nested SSA with derivatives (DerivSSA)

Let us formulate the nested version of SSA with deriva-
tives called DerivSSA. As well as in Section 3.2, let Y = XI

be one of matrices in the decomposition X = XI1 +. . .+XIp

obtained at Grouping step of Basic SSA; each group corre-
sponds to a separated time series component and we want
to construct a refined decomposition of Y. As before, denote
r = rank Y, Y = T −1HY.
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Algorithm 6. (DerivSSA.)

Input : The matrix Y, the weight of derivative γ > 0.

Output : a refined series decomposition Y = Ỹ(1) + . . .+ Ỹ(l).

1. Denote Φ(Y) = [Y2 − Y1 : . . . : YN − YN−1]. Construct
the matrix Z = [Y : γΦ(Y)].

2. Perform the SVD of Z: Z =
∑r
i=1

√
λiUiV

T
i .

3. Construct the following decomposition of Y = XI into
the sum of elementary matrices: Y =

∑r
i=1 UiU

T
i Y.

4. Partition the set {1, . . . , r} =
⊔l
m=1 Jm and perform

grouping to obtain a refined matrix decomposition Y =
YJ1 + . . .+ YJl .

5. Obtain a refined series decomposition Y = Ỹ(1) + . . .+
Ỹ(l), where Ỹ(m) = T −1HYJm .

Note that steps 2 and 3 of algorithm are correct, since
the column space of Z coincides with the column space of
Y. Therefore, rank Z = r and {Ui}ri=1 is the orthonormal
basis of the column space of Y.

The following proposition shows that Algorithm 6 is ex-
actly Algorithm 2 with a specific pair of matrices (L,R),
where Pi = Ui, Qi are normalized vectors YTUi in (7).

Proposition 1. The left singular vectors of the ordinary
SVD of Z coincide with the left singular vectors of the
(L,R)-SVD of the input matrix Y, where L ∈ ML,L is
the identity matrix and R is defined by the equality R =
E + γ2FTF, where E ∈MK,K is the identity matrix and

F =


−1 1 0 0 · · · 0
0 −1 1 0 · · · 0
...

. . .
. . .

. . .
. . .

...
0 · · · 0 −1 1 0
0 · · · 0 0 −1 1

 ∈MK−1,K .

Proof. Note that the standard inner product in the row
space of Z can be expressed as (Z1, Z2)2K−1 = (Q1, Q2)K +
γ2(Φ(Q1),Φ(Q2))K−1, where Q1 and Q2 consist of the first
K components of Z1 and Z2, Φ(Q) ∈ RK−1 applied to a
vector Q = (q1, . . . , qK)T consists of successive differences
of vector components qi+1 − qi. Thus, if we introduce the
inner product 〈Q1, Q2〉R = (RQ1, Q2)K , then the ordinary
SVD of Z can be reduced to the (L,R)-SVD of Y with the
corresponding matrices L and R.

Remark 6. If Y is the trajectory matrix of a series YN ,
then the nested SSA with derivatives is equivalent to the
MSSA implementation described in Section 4.1. Indeed, the
trajectory matrix of the derivative time series ΦN−1(Y) co-
incides with the matrix Φ(Y). Although, if Y is not Hankel,
there is no MSSA analogue.

4.3 Separation of sine waves with equal
amplitudes

Consider the series xn = sin(2πn/10) + sin(2πn/15), n =
1, . . . , N , N = 150, L = 70, which is depicted in Fig. 6.

time

S
um

 o
f s

in
us

oi
ds

−2
−1

0
1
2

0 50 100 150

Figure 6. Sum of two sinusoids with equal amplitudes

Sinusoids with periods 10 and 15 are approximately sepa-
rable for such series and window lengths. However, since the
sinusoid amplitudes are equal, there is no strong separability
and therefore after Basic SSA we obtain an unsatisfactory
decomposition, an arbitrary mixture of the sinusoids (top
picture of Fig. 7) with w-correlation between reconstructed
by ET1–2 and ET3–4 series equal to 0.92.

The decomposition performed by DerivSSA with γ = 10
applied to the group ET1–4 with J1 = {1, 2} and J2 = {3, 4}
(Algorithm 6) is depicted in the bottom graph of Fig. 7 and
demonstrates the very accurate separability, w-correlation
is equal to 0.01. The second measure, the mean proportion
0.5(τr1(X(1))+τr2(X(2)), is diminished from 0.3266 to 0.0003.
For this example, the obtained decomposition practically
does not depend on γ for all γ > 2.
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Figure 7. Sum of two sinusoids with equal amplitudes:
reconstruction by Basic SSA (top) and DerivSSA (bottom)

5. REAL-LIFE TIME SERIES

In this section we apply Iterative O-SSA (Algorithm 3
and 4 with possible modification provided by Algorithm 5)
and DerivSSA (Algorithm 6) to real-life time series. The role
of the methods for separability of sine-waves was demon-
strated in Sections 3.4 and 4.3 with the help of simulated
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data. The obtained conclusions are generally valid for real-
life series: DerivSSA adds to Basic SSA the ability to sepa-
rate sine waves with close amplitudes, while Iterative O-SSA
can help in separation of sine waves, which are not orthogo-
nal, that is, their frequencies are insufficiently far one from
another. Note that since in real-life series with seasonality
there are no close frequencies, DerivSSA can be very useful
for seasonality decomposition.

In this section we consider the problem of trend extrac-
tion. The choice of examples is explained by the following
considerations.

If a time series is long enough, then the oscillations are
well weakly separated from the trend and only strong sep-
arability is under question. Therefore, we expect that De-
rivSSA will work for trends of complex forms.

For short series, the trend can be not orthogonal to a
periodic component like seasonality; therefore, DerivSSA
can even worsen the separability; moreover, derivation sup-
presses low-frequency components. On the other hand, Iter-
ative O-SSA is specially designed to separate non-orthogonal
series components.

We will take only one iteration in Iterative O-SSA
method, since it is sufficient to obtain good decomposition in
the considered examples and also makes the methods com-
parable by computational cost.

5.1 Improving of strong separability

Let us consider US Unemployment data (monthly, 1948-
1981, thousands) for male (20 years and over). Data are
taken from [1], the series length N is equal to 408, see Fig.8.
Since the series is long, we can expect weak separability of
the trend and the seasonality. For better weak separability
we choose the window length equal to L = N/2 = 204,
which is divisible by 12.
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Figure 8. US unemployment: initial series

Basic SSA does not separate the trend and seasonality
(see Fig. 9 and Fig. 13 (left)) for this time series, likely due
to lack of strong separability. This is the typical situation
when the trend has a complex form, trend components are
mixed with the seasonality components and therefore the so

1 (88.09%) 2 (3.63%) 3 (2.62%) 4 (0.83%) 5 (0.79%)

6 (0.78%) 7 (0.5%) 8 (0.34%) 9 (0.32%) 10 (0.23%)

11 (0.23%) 12 (0.22%) 13 (0.22%)

Figure 9. US unemployment: eigenvectors obtained by Basic
SSA

1 (0.22%) 2 (0.22%) 3 (0.79%) 4 (0.78%) 5 (0.95%)

6 (0.76%) 7 (1.34%) 8 (0.3%) 9 (2.44%) 10 (1.26%)

11 (2.51%) 12 (8.53%) 13 (78.69%)

Figure 10. US unemployment: eigenvectors obtained by
DerivSSA

called Sequential SSA was recommended [11, Section 1.7.3].
However, this is the case when DerivSSA should help.

We apply DerivSSA to the group ET1–13 that can be re-
lated to the signal. DerivSSA separates different frequencies
so that components with higher frequencies become lead-
ing ones. Since the low-frequency components in the consid-
ered series have large contribution, the weight of derivatives
should be large to make the seasonal components leading;
we take γ = 1000.

The resulting eigenvectors are depicted in Fig. 10. One
can see that the first 4 components contain seasonality, while
the eigenvectors 5–13 contains components of the trend. The
mixture of the components within the trend group is not im-
portant. Fig. 10 demonstrates that the seasonal components
are now separated from the residual. Fig. 11 depicting the
DerivSSA reconstructions of the trend and the seasonality
confirms that DerivSSA visibly improves the reconstruction
accuracy, especially at the ends of the series.

Since Iterative O-SSA has possibility of sigma-correction,
it also can help to move apart the decomposition compo-
nents, and therefore we can apply Iterative O-SSA to the
group ET1–13 with the refined groups ET1–4,7–11 (trend)

12 N.Golyandina and A.Shlemov



time

U
S

U
n

e
m

p
lo

y
m

e
n

t,
 M

A
L

E

1000

2000

3000

4000

Trend

−400

−200

0

200

400

600

1950 1960 1970 1980

Periodics

Basic SSA Iterative O−SSA Original

Figure 11. US unemployment: Decompositions by Basic SSA and Iterative O-SSA, which coincides with that by DerivSSA.

and ET5,6,12,13 (seasonality). Since the components of the
Basic SSA decomposition are mixed, we refer the compo-
nents that contain mostly trend and slow cycles to the first
group and the components that contain mostly seasonality
to the second group. As eigenvectors reflect forms of the cor-
responding time series components, we can use the graph of
eigenvectors shown in Fig. 9 for the initial grouping. For ex-
ample, the forth eigenvector looks like slow oscillations cor-
rupted by seasonality and therefore we refer it to the trend
group, while the fifth eigenvector looks like seasonal compo-
nent corrupted by something slow varying and we refer it to
the seasonality group. We apply one iteration with sigma-
correction, taking κ = 2. After reordering caused by the
sigma-correction, the first trend group consists of the first
eight components 1–8, while the second seasonality group
consists of 9–13 components, see Fig. 12.

1 (88.09%) 2 (3.63%) 3 (2.62%) 4 (0.83%) 5 (0.5%)

6 (0.33%) 7 (0.32%) 8 (0.24%) 9 (0.23%) 10 (0.79%)

11 (0.78%) 12 (0.22%) 13 (0.22%)

Figure 12. US unemployment: Iterative O-SSA eigenvectors
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Figure 13. US unemployment: w-correlations before (left)
and after (right) Iterative O-SSA

The trend eigenvectors of the DerivSSA decomposition
(Fig. 10, ET5–13) differ from that of the O-SSA decom-
position (Fig. 12, ET1–8), the seasonality components are
almost the same. Nevertheless, the result of Iterative O-SSA
reconstruction is visibly the same as that of DerivSSA shown
in Fig. 11 and therefore we do not depict this reconstruction.

Fig. 13 contains the w-correlations between the elemen-
tary components provided by Basic SSA (left) and the
w-correlations between the elementary components recon-
structed by Iterative O-SSA (right). The figure confirms the
improving of separability. For trend extraction, it is impor-
tant that correlations between trend and seasonality groups
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Figure 14. US unemployment: 2D plots of periodic
eigenvectors before (left) and after (right) Iterative O-SSA

are close to zero. Really, correlations between ET1–8 and
ET9–13 are small. Mixture of the components within the
trend group is not important. One can see that the trend
components are still slightly mixed with the noise compo-
nents. However, we had a mixture with the residual before
iterations (left) and this cannot be corrected by Iterative O-
SSA (right), since the nested version is used. Fig. 14 shows
the improvement of separability with the help of scatter-
plots of seasonal eigenvectors. After one iteration, plots of
seasonal eigenvectors form almost regular polygons.

Figures for the decomposition of DerivSSA analogous to
Fig. 13 and 14 are very similar and we do not present them
in the paper. Note that in DerivSSA we group components
after their separation, what is easier than to group mixing
components for Iterative O-SSA before separation. That is,
in the considered example the resultant decomposition is the
same, but application of DerivSSA is easier.

5.2 Improving of weak separability

Let us consider the series ‘Fortified wine’ (fortified wine
sales, Australia, monthly, from January 1980, thousands of
litres) taken from [17]. The first 120 points of the series are
depicted in Fig. 15.

The series length is long enough to obtain weak separa-
bility; therefore, we will consider short subseries to demon-
strate the advantage of Iterative O-SSA for improving of
weak separability.

We take here the window length L = 18 to make the
difference between methods clearly visible on the figures,
although the relation between accuracies of the considered
methods is the same for other choices of window lengths.
Let us consider two subseries, from 30th to 78th points and
from 36th to 84th points. The difference consists in behavior
of the seasonality at the ends of the subseries.

As well as in the previous example, we start with Basic
SSA. ET1 is identified as corresponding to trend, other com-
ponents are produced by seasonality and noise (we do not
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Figure 15. Fortified wines: trend reconstruction by DerivSSA
and Iterative O-SSA for subseries of points 30–78.
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Figure 16. Fortified wines: trend reconstruction by DerivSSA
and Iterative O-SSA for subseries of points 36–84.

include their pictures). One can see in Fig. 15 and 16 (red
line) that the reconstructed trend is slightly mixed with the
seasonality and steps after the seasonality at the ends of the
series.

To apply Iterative O-SSA, we should choose a group of el-
ementary components containing the trend components and
approximately separated from the residual. Let it be ET1–7.
Thus, we apply one iteration of O-SSA to the refined groups
ET1 and ET2–7. Since the trend has the contribution much
larger than the residual, we consider Iterative O-SSA with
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no sigma-correction. The result of reconstruction is much
more relevant, see Fig. 15 and 16 (blue line). Green line
in the same figures shows that DerivSSA gives more poor
reconstruction than Basic SSA in this example.

6. CONCLUSION

We suggested two modifications of SSA, which can con-
siderably improve the separability and thereby the recon-
struction accuracy. Iterative O-SSA shows its advantage
dealing with separation of sine waves with close frequen-
cies and with extraction of trend for short series. DerivSSA
shows its advantage in conditions of weak separability deal-
ing with long enough series with complex-form trends and
sine waves with equal amplitudes.

We demonstrated that for separation of trend even one
iteration of Iterative O-SSA can improve the separability.
while DerivSSA works only in conditions of approximate
weak separability. On the other hand, for separability of
weakly separable sine waves with equal amplitudes De-
riveSSA works more effectively than Iterative O-SSA.

The important aspect of both methods is that they should
be applied to the estimated signal subspace (more general,
to the estimated subspace of the sum of components that we
want to separate), that is, they work in a nested manner. We
can consider the methods as refining of the decomposition
obtained by Basic SSA (generally, the subspace estimation
can be performed by any method, not necessarily by SSA).
Despite the both methods have the underlying model of se-
ries governed by linear recurrence relations, the methods do
not use the model directly. This allows one to apply the
methods even if the signal satisfies the model only locally.
For example, the trend usually does not satisfy an LRR ex-
actly; however, it can be extracted by SSA and its considered
extensions.

The common part of the methods is the generalized SVD
(so called Restricted SVD), which provides decompositions
that are not bi-orthogonal with respect to the conventional
inner product. These methods do not use the optimality
properties of the generalized SVD; however, this is not es-
sential for their success in the signal decomposition.

The further development of the considered methods can
consists in their combination for effective solution of the
problem of lack of both weak and strong separability and in
the use of the obtained improved non-orthogonal decompo-
sition for forecasting.

APPENDIX A. INNER PRODUCTS AND
RELATED MATRIX
DECOMPOSITIONS

Here we provide the necessary information about matrix
decompositions with respect to given inner products in the
row and column spaces (see e.g. [32, Th.3]), which are called
in [23] Restricted SVD (RSVD).

A.1 Inner products

Usually, orthogonality of vectors in RM is considered
in a conventional manner: X1 and X2 in RM are orthog-
onal if their Euclidean inner product is equal to 0, i.e.
(X1, X2)M = 0, where (·, ·)M is the standard inner product
in RM . Sometimes we will omit the dimension in denotation
if it is clear from the context. It is well-known that any inner
product in RM can be defined as 〈X1, X2〉A = XT

1 AX2 for a
symmetric positive-definite matrix A. For any OA such that
OT

AOA = A we have 〈X1, X2〉A = (OAX1,OAX2)M . Evi-
dently, OA is defined up to multiplication by an orthogonal
matrix.

The inner product yields the notion of orthogonality. We
will say that two vectors are A-orthogonal if 〈X1, X2〉A = 0.

Let the matrix A be symmetric positive semi-definite,
rank(A) = r. Then A can be decomposed as A = OT

AOA

with OA ∈ Mr,M and 〈X1, X2〉A = (OAX1,OAX2)r. Note
that the row space of OA is the same for any choice of OA

and coincides with the column space of A. If the matrix A
is not positive definite, then we obtain a degenerate inner
product, that is, if 〈X,X〉A = 0, then it is not necessary that
X = 0M . However, for vectors belonging to the column space
of A the equality 〈X,X〉A = 0 yields X = 0M . Thus, if we
consider inner product generated by a rank-deficient matrix
A, then we should consider it only on the column space of
A. In particular, we can correctly define A-orthogonality of
vectors from the column space of A.

The following evident proposition shows that any basis
can be considered as A-orthonormal for some choice of OA.

Proposition 2. Let P1, . . . , Pr be a set of linearly indepen-
dent vectors in RM . Then P1, . . . , Pr are A-orthonormal for
OA = P†, where P = [P1 : . . . : Pr].

Note that the column space of P coincides with the
row space of OA. We call a matrix OA that makes a set
P1, . . . , Pr A-orthonormal orthonormalizing matrix of this
set. Certainly, the orthonormalizing matrix is not uniquely
defined.

A.2 Oblique decompositions

Let us consider a minimal decompositions of Y ∈ ML,K

of rank r in the form

(8) Y =

r∑
i=1

σiPiQ
T
i ,

where σ1 ≥ σ2 ≥ . . . ≥ σr > 0, {Pi}ri=1 and {Qi}ri=1 are
linearly independent (therefore, {Pi}ri=1 is a basis of the
column space of Y, {Qi}ri=1 is a basis of the row space of
Y). It is convenient to write (8) in the matrix form: Y =
PΣQT, where P = [P1 : . . . : Pr], Q = [Q1 : . . . : Qr] and
Σ = diag(σ1, . . . , σr).
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Proposition 3. Let OL be an orthonormalizing matrix of
{Pi}ri=1 and OR be an orthonormalizing matrix of {Qi}ri=1.
Then

(9) OLYOT
R =

r∑
i=1

σi(OLPi)(ORQi)
T

is an SVD of OLYOT
R ∈Mr,r with the left singular vectors

OLPi ∈ Rr and the right singular vectors ORQi ∈ Rr.

This proposition follows from the fact that any bi-
orthogonal decomposition is an SVD.

Definition 6. We say that (8) is an (L,R)-SVD, if the
system {Pi}ri=1 is L-orthonormal and the system {Qi}ri=1 is
R-orthonormal.

In a matrix statement of problem [23], the (L,R)-SVD is
called Restricted SVD of Y with respect to (L,R).

It follows from Definition 6 that (9) is an SVD if and only
if (8) is an (L,R)-SVD, where L = OT

LOL and R = OT
ROR,

OL and OR are orthonormalizing.
Proposition 3 says that any minimal decomposition into a

sum of matrices of rank 1 in the form (8) is the (L,R)-SVD
for some matrices L and R. The definition of the (L,R)-
SVD of Y implies that the column space of L coincides with
the column space of Y and the column space of R coincides
with the row space of Y.

Definition 7. If the column space of L contains the column
space of Y and the column space of R contains the row space
of Y, then we will call such a pair (L,R) consistent with
the matrix Y.

Remark 7. Definition of the (L,R)-SVD of Y is easily
extended to matrices (L,R) consistent with the matrix Y.
Algorithm 1 is valid for any matrices (L,R) consistent with
the matrix Y.

Proposition 4. Let

(10) OLYOT
R =

r∑
i=1

√
λiUiV

T
i

be the ordinary SVD of OLYOT
R. Then the decomposition

(8) with σi =
√
λi, Pi = O†LUi and Qi = O†RVi is the

(L,R)-SVD.

Proposition 4 follows from Proposition 3 and provides the
method how the (L,R)-SVD can be calculated (see Algo-
rithm 1).

Let us show how we can change the set of σi in the (L,R)-
SVD (8) without change of directions of Pi and Qi, that is,
of Pi/‖Pi‖ and Qi/‖Qi‖.

Proposition 5. Let (8) be the (L,R)-SVD with OL = P†

and OR = Q†. Then

(11) Y =

r∑
i=1

σ̃iP̃iQ̃
T
i ,

where σ̃i = σi/(µiνi), P̃i = µiPi and Q̃i = νiQi, is (after

reordering of σ̃i) the (L̃, R̃)-SVD with OL̃ = P̃† and OR̃ =

Q̃†.

The case of one-side non-orthogonal decompositions,
when one of the matrices, R or L, is identical, is of spe-
cial concern. It is shown in [23] that then Restricted SVD is
Quotient SVD (often called Generalized SVD [26]). If L is
the identity matrix, then Pi, i = 1, . . . , r, are orthonormal
in the conventional sense and form an orthonormal basis of
the column space of Y. If R is the identity matrix, then Qi,
i = 1, . . . , r, are orthonormal and constitute an orthonormal
basis of the row space.

A.3 Matrix scalar products and
approximations

Let X,Y ∈ ML,K , a scalar products 〈·, ·〉L, where L =
OT

LOL, be defined in their pooled column space and a scalar
products 〈·, ·〉R, where R = OT

ROR, be defined in their
pooled row space.

Define the induced Frobenius inner product as

〈X,Y〉F,(L,R) = 〈OLXOT
R,OLYOT

R〉F.

Note that the definition does not depend on the choice of
OR and OR, since 〈C,D〉F = tr(CTD) = tr(CDT).

Thus, for two matrices C and D we say that they
1. (L,R) F-orthogonal if 〈C,D〉F,(L,R) = 0,
2. (L,R)-left orthogonal if CTLD = 0,
3. (L,R)-right orthogonal if CRDT = 0,
4. (L,R) bi-orthogonal if the left and right orthogonalities
hold.

Left or right orthogonality is the sufficient condition for
F-orthogonality. The matrix components of an (L,R)-SVD
are (L,R) bi-orthogonal and therefore (L,R) F-orthogonal.

The measure of (L,R) orthogonality is

(12) ρ(L,R)(X,Y) =
〈X,Y〉F,(L,R)

‖X‖F,(L,R)‖Y‖F,(L,R)
.

Let X =
∑
i Xi, where Xi = σiPiQ

T
i , be the (L,R)-

SVD. Then ‖Xi‖F,(L,R) = σi and ‖X‖2F,(L,R) =
∑
i σ

2
i . The

contribution of Xk is equal to σ2
k/
∑
i σ

2
i .

The following proposition follows from the representation
of the Frobenius scalar product through the trace of matrix
multiplication.

Proposition 6. If X and Y are (L,R) left-orthogonal, then

X and Y are (L, R̃) F-orthogonal for any R̃.

Corollary 1. Let L be the identity matrix and X and Y be
(L,R) left-orthogonal for some matrix R. Then the conven-
tional F-orthogonality of X and Y holds and ‖X + Y‖2F =
‖X‖2F + ‖Y‖2F.
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Corollary 1 shows that if at least in either row or column
matrix spaces the conventional inner product is given, that
is, vectors are orthogonal in the ordinary sense, then the
conventional F-orthogonality can be considered and F-norm
and F-inner product can be used to measure the approxi-
mation accuracy and the component orthogonality.

Remark 8. The introduced definitions and statements are
appropriate if L and R are consistent with the matrices X
and Y (see Definition 7). Otherwise, e.g., (12) can be for-
mally calculated, but this measure will reflect only the cor-
relation between projections of columns and rows of X and
Y on the row spaces of L and R correspondingly.

Let us remark that the conventional Frobenius norm is
an interpretable characteristic of approximation, while the
norm based on 〈·, ·〉F,(L,R) is much worse interpretable, since
it is equivalent to approximation by the Frobenius norm of
the matrix OLXOT

R.
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