Automatic creation of function objects

The STL has, in the header file <functional>, a set of templates that will automatically create function objects for you. These generated function objects are admittedly simple, but the goal is to provide very basic functionality that will allow you to compose more complicated function objects, and in many situations this is all you’ll need. Also, you’ll see that there are some function object adapters that allow you to take the simple function objects and make them slightly more complicated.

Here are the templates that generate function objects, along with the expressions that they effect.

	Name
	Type
	Result produced by generated function object

	plus
	BinaryFunction
	arg1 + arg2

	minus
	BinaryFunction
	arg1 - arg2

	multiplies
	BinaryFunction
	arg1 * arg2

	divides
	BinaryFunction
	arg1 / arg2

	modulus
	BinaryFunction
	arg1 % arg2

	negate
	UnaryFunction
	- arg1

	equal_to
	BinaryPredicate
	arg1 == arg2

	not_equal_to
	BinaryPredicate
	arg1 != arg2

	greater
	BinaryPredicate
	arg1 > arg2

	less
	BinaryPredicate
	arg1 < arg2

	greater_equal
	BinaryPredicate
	arg1 >= arg2

	less_equal
	BinaryPredicate
	arg1 <= arg2

	logical_and
	BinaryPredicate
	arg1 && arg2

	logical_or
	BinaryPredicate
	arg1 || arg2

	logical_not
	UnaryPredicate
	!arg1

	not1()
	Unary Logical
	!(UnaryPredicate(arg1))

	not2()
	Binary Logical
	!(BinaryPredicate(arg1, arg2))

Binders

It’s common to want to take a binary function object and to “bind” one of its arguments to a constant value. After binding, you get a unary function object.

The binder templates (which work with any binary function object, not just binary predicates) give you two choices:

bind1st(const BinaryFunction& op, const T& t);
bind2nd(const BinaryFunction& op, const T& t);
Both bind t to one of the arguments of op, but bind1st() binds t to the first argument, and bind2nd() binds t to the second argument. With less, the function object that provides the solution to our exercise is:

bind2nd(less<int>(), 20);

