String iostreams
A string stream works directly with memory instead of a file or standard output. It uses the same reading and formatting functions that you use with cin and cout to manipulate bytes in memory. On old computers, the memory was referred to as core, so this type of functionality is often called in-core formatting.

The class names for string streams echo those for file streams. If you want to create a string stream to extract characters from, you create an istringstream. If you want to put characters into a string stream, you create an ostringstream. All declarations for string streams are in the standard header <sstream>. As usual, there are class templates that fit into the iostreams hierarchy, as shown in the following figure:

[image: image1.png]
Input string streams
To read from a string using stream operations, you create an istringstream object initialized with the string. The following program shows how to use an istringstream object:

//: C04:Istring.cpp
// Input string streams.
#include <cassert>
#include <cmath> // For fabs()
#include <iostream>
#include <limits> // For epsilon()
#include <sstream>
#include <string>
using namespace std;

int main() {

 istringstream s("47 1.414 This is a test");

 int i;

 double f;

 s >> i >> f; // Whitespace-delimited input
 assert(i == 47);

 double relerr = (fabs(f) - 1.414) / 1.414;

 assert(relerr <= numeric_limits<double>::epsilon());

 string buf2;

 s >> buf2;

 assert(buf2 == "This");

 cout << s.rdbuf(); // " is a test"
} ///:~

You can see that this is a more flexible and general approach to transforming character strings to typed values than the standard C library functions such as atof() or atoi(), even though the latter may be more efficient for single conversions.

In the expression s >> i >> f, the first number is extracted into i, and the second into f. This isn’t “the first whitespace-delimited set of characters” because it depends on the data type it’s being extracted into. For example, if the string were instead, “1.414 47 This is a test,” then i would get the value 1 because the input routine would stop at the decimal point. Then f would get 0.414. This could be useful if you want to break a floating-point number into a whole number and a fraction part. Otherwise it would seem to be an error. The second assert() calculates the relative error between what we read and what we expected; it’s always better to do this than to compare floating-point numbers for equality. The constant returned by epsilon(), defined in <limits>, represents the machine epsilon for double-precision numbers, which is the best tolerance you can expect comparisons of doubles to satisfy.[46]
As you may already have guessed, buf2 doesn’t get the rest of the string, just the next white-space-delimited word. In general, it’s best to use the extractor in iostreams when you know the exact sequence of data in the input stream and you’re converting to some type other than a character string. However, if you want to extract the rest of the string all at once and send it to another iostream, you can use rdbuf() as shown.

To test the Date extractor at the beginning of this chapter, we used an input string stream with the following test program:

//: C04:DateIOTest.cpp
//{L} ../C02/Date
#include <iostream>
#include <sstream>
#include "../C02/Date.h"
using namespace std;

void testDate(const string& s) {

 istringstream os(s);

 Date d;

 os >> d;

 if(os)

 cout << d << endl;

 else
 cout << "input error with \"" << s << "\"" << endl;

}

int main() {

 testDate("08-10-2003");

 testDate("8-10-2003");

 testDate("08 - 10 - 2003");

 testDate("A-10-2003");

 testDate("08%10/2003");

} ///:~

Each string literal in main() is passed by reference to testDate(), which in turn wraps it in an istringstream so we can test the stream extractor we wrote for Date objects. The function testDate() also begins to test the inserter, operator<<().

Output string streams
To create an output string stream, you just create an ostringstream object, which manages a dynamically sized character buffer to hold whatever you insert. To get the formatted result as a string object, you call the str() member function. Here’s an example:

//: C04:Ostring.cpp {RunByHand}
// Illustrates ostringstream.
#include <iostream>
#include <sstream>
#include <string>
using namespace std;

int main() {

 cout << "type an int, a float and a string: ";

 int i;
 float f;
 cin >> i >> f;
 cin >> ws; // Throw away white space
 string stuff;

 getline(cin, stuff); // Get rest of the line
 ostringstream os;
 os << "integer = " << i << endl;
 os << "float = " << f << endl;
 os << "string = " << stuff << endl;
 string result = os.str();

 cout << result << endl;

} ///:~

This is similar to the Istring.cpp example earlier that fetched an int and a float. A sample execution follows (the keyboard input is in bold type).

type an int, a float and a string: 10 20.5 the end
integer = 10

float = 20.5

string = the end

You can see that, like the other output streams, you can use the ordinary formatting tools, such as the << operator and endl, to send bytes to the ostringstream. The str() function returns a new string object every time you call it so the underlying stringbuf object owned by the string stream is left undisturbed.

In the previous chapter, we presented a program, HTMLStripper.cpp, that removed all HTML tags and special codes from a text file. As promised, here is a more elegant version using string streams.

//: C04:HTMLStripper2.cpp {RunByHand}
//{L} ../C03/ReplaceAll
// Filter to remove html tags and markers.
#include <cstddef>
#include <cstdlib>
#include <fstream>
#include <iostream>
#include <sstream>
#include <stdexcept>
#include <string>
#include "../C03/ReplaceAll.h"
#include "../require.h"
using namespace std;

string& stripHTMLTags(string& s) throw(runtime_error) {

 size_t leftPos;

 while((leftPos = s.find('<')) != string::npos) {

 size_t rightPos = s.find('>', leftPos+1);

 if(rightPos == string::npos) {

 ostringstream msg;

 msg << "Incomplete HTML tag starting in position "
 << leftPos;

 throw runtime_error(msg.str());

 }

 s.erase(leftPos, rightPos - leftPos + 1);

 }

 // Remove all special HTML characters
 replaceAll(s, "<", "<");

 replaceAll(s, ">", ">");

 replaceAll(s, "&", "&");

 replaceAll(s, " ", " ");

 // Etc...
 return s;

}

int main(int argc, char* argv[]) {

 requireArgs(argc, 1,

 "usage: HTMLStripper2 InputFile");

 ifstream in(argv[1]);

 assure(in, argv[1]);

 // Read entire file into string; then strip
 ostringstream ss;

 ss << in.rdbuf();

 try {

 string s = ss.str();

 cout << stripHTMLTags(s) << endl;

 return EXIT_SUCCESS;

 } catch(runtime_error& x) {

 cout << x.what() << endl;

 return EXIT_FAILURE;

 }

} ///:~

In this program we read the entire file into a string by inserting a rdbuf() call to the file stream into an ostringstream. Now it’s an easy matter to search for HTML delimiter pairs and erase them without having to worry about crossing line boundaries like we had to with the previous version in Chapter 3.

The following example shows how to use a bidirectional (that is, read/write) string stream:

//: C04:StringSeeking.cpp {-bor}{-dmc}
// Reads and writes a string stream.
#include <cassert>
#include <sstream>
#include <string>
using namespace std;

int main() {

 string text = "We will hook no fish";

 stringstream ss(text);

 ss.seekp(0, ios::end);

 ss << " before its time.";

 assert(ss.str() ==

 "We will hook no fish before its time.");

 // Change "hook" to "ship"
 ss.seekg(8, ios::beg);

 string word;

 ss >> word;

 assert(word == "hook");

 ss.seekp(8, ios::beg);

 ss << "ship";

 // Change "fish" to "code"
 ss.seekg(16, ios::beg);

 ss >> word;

 assert(word == "fish");

 ss.seekp(16, ios::beg);

 ss << "code";

 assert(ss.str() ==

 "We will ship no code before its time.");

 ss.str("A horse of a different color.");

 assert(ss.str() == "A horse of a different color.");

} ///:~

As always, to move the put pointer, you call seekp(), and to reposition the get pointer, you call seekg(). Even though we didn’t show it with this example, string streams are a little more forgiving than file streams in that you can switch from reading to writing or vice-versa at any time. You don’t need to reposition the get or put pointers or flush the stream. This program also illustrates the overload of str() that replaces the stream’s underlying stringbuf with a new string.

