Exceptions: Catching and Deleting

#include <afx.h>

Your exception handlers must delete exception objects they handle, because failure to delete the exception causes a memory leak whenever that code catches an exception.

Your catch block must delete an exception when:

· The catch block throws a new exception.

Of course, you must not delete the exception if you throw the same exception again:

catch(CException* e)

{

 if (m_bThrowExceptionAgain)

 throw; // Do not delete e

}

· Execution returns from within the catch block.

Note When deleting a CException, use the Delete member function to delete the exception. Do not use the delete keyword, because it can fail if the exception is not on the heap.

To catch and delete exceptions

· Use the try keyword to set up a try block. Execute any program statements that might throw an exception within a try block.

Use the catch keyword to set up a catch block. Place exception-handling code in a catch block. The code in the catch block is executed only if the code within the try block throws an exception of the type specified in the catch statement.

The following skeleton shows how try and catch blocks are normally arranged:

// Normal program statements

...

try

{

 // Execute some code that might throw an exception.

}

catch(CException* e)

{

 // Handle the exception here.

 // "e" contains information about the exception.

 e->Delete();

}

// Other normal program statements

...

When an exception is thrown, control passes to the first catch block whose exception-declaration matches the type of the exception. You can selectively handle different types of exceptions with sequential catch blocks as listed below:

try

{

 // Execute some code that might throw an exception.

}

catch(CMemoryException* e)

{

 // Handle the out-of-memory exception here.

}

catch(CFileException* e)

{

 // Handle the file exceptions here.

}

catch(CException* e)

{

 // Handle all other types of exceptions here.

}
Exceptions: Examining Exception Contents

Although a catch block’s argument can be of almost any data type, the MFC functions throw exceptions of types derived from the class CException. To catch an exception thrown by an MFC function, then, you write a catch block whose argument is a pointer to a CException object (or an object derived from CException, such as CMemoryException). Depending on the exact type of the exception, you can examine the data members of the exception object to gather information about the specific cause of the exception.

For example, the CFileException type has the m_cause data member, which contains an enumerated type that specifies the cause of the file exception. Some examples of the possible return values are CFileException::fileNotFound and CFileException::readOnly.

The following example shows how to examine the contents of a CFileException. Other exception types can be examined similarly.

try

{

 // Do something to throw a file exception.

}

catch(CFileException* theException)

{

 if(theException->m_cause == CFileException::fileNotFound)

 TRACE("File not found\n");

 theException->Delete();

}
To throw an exception

· Use one of the MFC helper functions, such as AfxThrowMemoryException. These functions throw a preallocated exception object of the appropriate type.

In the following example, a function tries to allocate two memory blocks and throws an exception if either allocation fails:

{

 char* p1 = (char*)malloc(SIZE_FIRST);

 if(p1 == NULL)

 AfxThrowMemoryException();

 char* p2 = (char*)malloc(SIZE_SECOND);

 if(p2 == NULL)

 {

 free(p1);

 AfxThrowMemoryException();

 }

 // ... Do something with allocated blocks ...

 // In normal exit, both blocks are deleted.

 free(p1);

 free(p2);

}

If the first allocation fails, you can simply throw the memory exception. If the first allocation is successful but the second one fails, you must free the first allocation block before throwing the exception. If both allocations succeed, you can proceed normally and free the blocks when exiting the function.

exception

class exception {

public:

 exception() throw();

 exception(const exception& rhs) throw();

 exception& operator=(const exception& rhs) throw();

 virtual ~exception() throw();

 virtual const char *what() const throw();

 };

Наследники: out_of_range, bad_cast, bad_typeid
