Internal formatting data

The class ios (which you can see in the header file <iostream>) contains data members to store all the formatting data pertaining to that stream. Some of this data has a range of values and is stored in variables: the floating-point precision, the output field width, and the character used to pad the output (normally a space). The rest of the formatting is determined by flags, which are usually combined to save space and are referred to collectively as the format flags. You can find out the value of the format flags with the ios::flags() member function, which takes no arguments and returns a long (typedefed to fmtflags) that contains the current format flags. All the rest of the functions make changes to the format flags and return the previous value of the format flags.

fmtflags ios::flags(fmtflags newflags);

fmtflags ios::setf(fmtflags ored_flag);

fmtflags ios::unsetf(fmtflags clear_flag);

fmtflags ios::setf(fmtflags bits, fmtflags field);

The first function forces all the flags to change, which you do sometimes. More often, you change one flag at a time using the remaining three functions.

The use of setf() can seem more confusing: To know which overloaded version to use, you must know what type of flag you’re changing. There are two types of flags: ones that are simply on or off, and ones that work in a group with other flags. The on/off flags are the simplest to understand because you turn them on with setf(fmtflags) and off with unsetf(fmtflags). These flags are

	on/off flag
	effect

	ios::skipws
	Skip white space. (For input; this is the default.)

	ios::showbase
	Indicate the numeric base (dec, oct, or hex) when printing an integral value. The format used can be read by the C++ compiler.

	ios::showpoint
	Show decimal point and trailing zeros for floating-point values.

	ios::uppercase
	Display uppercase A-F for hexadecimal values and E for scientific values.

	ios::showpos
	Show plus sign (+) for positive values.

	ios::unitbuf
	“Unit buffering.” The stream is flushed after each insertion.

	ios::stdio
	Synchronizes the stream with the C standard I/O system.

For example, to show the plus sign for cout, you say cout.setf(ios::showpos). To stop showing the plus sign, you say cout.unsetf(ios::showpos).

The last two flags deserve some explanation. You turn on unit buffering when you want to make sure each character is output as soon as it is inserted into an output stream. You could also use unbuffered output, but unit buffering provides better performance.

The ios::stdio flag is used when you have a program that uses both iostreams and the C standard I/O library (not unlikely if you’re using C libraries). If you discover your iostream output and printf() output are occurring in the wrong order, try setting this flag.

Format fields

The second type of formatting flags work in a group. You can have only one of these flags on at a time, like the buttons on old car radios – you push one in, the rest pop out. Unfortunately this doesn’t happen automatically, and you have to pay attention to what flags you’re setting so you don’t accidentally call the wrong setf() function. For example, there’s a flag for each of the number bases: hexadecimal, decimal, and octal. Collectively, these flags are referred to as the ios::basefield. If the ios::dec flag is set and you call setf(ios::hex), you’ll set the ios::hex flag, but you won’t clear the ios::dec bit, resulting in undefined behavior. The proper thing to do is call the second form of setf() like this: setf(ios::hex, ios::basefield). This function first clears all the bits in the ios::basefield, then sets ios::hex. Thus, this form of setf() ensures that the other flags in the group “pop out” whenever you set one. Of course, the hex() manipulator does all this for you, automatically, so you don’t have to concern yourself with the internal details of the implementation of this class or to even care that it’s a set of binary flags. Later you’ll see there are manipulators to provide equivalent functionality in all the places you would use setf().

Here are the flag groups and their effects:

	ios::basefield
	effect

	ios::dec
	Format integral values in base 10 (decimal) (default radix).

	ios::hex
	Format integral values in base 16 (hexadecimal).

	ios::oct
	Format integral values in base 8 (octal).

	ios::floatfield
	effect

	ios::scientific
	Display floating-point numbers in scientific format. Precision field indicates number of digits after the decimal point.

	ios::fixed
	Display floating-point numbers in fixed format. Precision field indicates number of digits after the decimal point.

	“automatic” (Neither bit is set.)
	Precision field indicates the total number of significant digits.

	ios::adjustfield
	effect

	ios::left
	Left-align values; pad on the right with the fill character.

	ios::right
	Right-align values. Pad on the left with the fill character. This is the default alignment.

	ios::internal
	Add fill characters after any leading sign or base indicator, but before the value.

Width, fill and precision

The internal variables that control the width of the output field, the fill character used when the data doesn’t fill the output field, and the precision for printing floating-point numbers are read and written by member functions of the same name.

	function
	effect

	int ios::width()
	Reads the current width. (Default is 0.) Used for both insertion and extraction.

	int ios::width(int n)
	Sets the width, returns the previous width.

	int ios::fill()
	Reads the current fill character. (Default is space.)

	int ios::fill(int n)
	Sets the fill character, returns the previous fill character.

	int ios::precision()
	Reads current floating-point precision. (Default is 6.)

	int ios::precision(int n)
	Sets floating-point precision, returns previous precision. See ios::floatfield table for the meaning of “precision.”

The fill and precision values are fairly straightforward, but width requires some explanation. When the width is zero, inserting a value will produce the minimum number of characters necessary to represent that value. A positive width means that inserting a value will produce at least as many characters as the width; if the value has less than width characters, the fill character is used to pad the field. However, the value will never be truncated, so if you try to print 123 with a width of two, you’ll still get 123. The field width specifies a minimum number of characters; there’s no way to specify a maximum number.

The width is also distinctly different because it’s reset to zero by each inserter or extractor that could be influenced by its value. It’s really not a state variable, but an implicit argument to the inserters and extractors. If you want to have a constant width, you have to call width() after each insertion or extraction.

Open modes

You can control the way a file is opened by changing a default argument. The following table shows the flags that control the mode of the file:

	Flag
	Function

	ios::in
	Opens an input file. Use this as an open mode for an ofstream to prevent truncating an existing file.

	ios::out
	Opens an output file. When used for an ofstream without ios::app, ios::ate or ios::in, ios::trunc is implied.

	ios::app
	Opens an output file for appending.

	ios::ate
	Opens an existing file (either input or output) and seeks the end.

	ios::nocreate
	Opens a file only if it already exists. (Otherwise it fails.)

	ios::noreplace
	Opens a file only if it does not exist. (Otherwise it fails.)

	ios::trunc
	Opens a file and deletes the old file, if it already exists.

	ios::binary
	Opens a file in binary mode. Default is text mode.

These flags can be combined using a bitwise or.

An exhaustive example

To make sure you know how to call all the functions previously discussed, here’s an example that calls them all:

//: C02:Format.cpp
// Formatting functions
#include <fstream>

using namespace std;

#define D(A) T << #A << endl; A

ofstream T("format.out");

int main() {

 D(int i = 47;)

 D(float f = 2300114.414159;)

 char* s = "Is there any more?";

 D(T.setf(ios::unitbuf);)

// D(T.setf(ios::stdio);) // SOMETHING MAY HAVE CHANGED
 D(T.setf(ios::showbase);)

 D(T.setf(ios::uppercase);)

 D(T.setf(ios::showpos);)

 D(T << i << endl;) // Default to dec
 D(T.setf(ios::hex, ios::basefield);)

 D(T << i << endl;)

 D(T.unsetf(ios::uppercase);)

 D(T.setf(ios::oct, ios::basefield);)

 D(T << i << endl;)

 D(T.unsetf(ios::showbase);)

 D(T.setf(ios::dec, ios::basefield);)

 D(T.setf(ios::left, ios::adjustfield);)

 D(T.fill('0');)

 D(T << "fill char: " << T.fill() << endl;)

 D(T.width(10);)

 T << i << endl;

 D(T.setf(ios::right, ios::adjustfield);)

 D(T.width(10);)

 T << i << endl;

 D(T.setf(ios::internal, ios::adjustfield);)

 D(T.width(10);)

 T << i << endl;

 D(T << i << endl;) // Without width(10)
 D(T.unsetf(ios::showpos);)

 D(T.setf(ios::showpoint);)

 D(T << "prec = " << T.precision() << endl;)

 D(T.setf(ios::scientific, ios::floatfield);)

 D(T << endl << f << endl;)

 D(T.setf(ios::fixed, ios::floatfield);)

 D(T << f << endl;)

 D(T.setf(0, ios::floatfield);) // Automatic
 D(T << f << endl;)

 D(T.precision(20);)

 D(T << "prec = " << T.precision() << endl;)

 D(T << endl << f << endl;)

 D(T.setf(ios::scientific, ios::floatfield);)

 D(T << endl << f << endl;)

 D(T.setf(ios::fixed, ios::floatfield);)

 D(T << f << endl;)

 D(T.setf(0, ios::floatfield);) // Automatic
 D(T << f << endl;)

 D(T.width(10);)

 T << s << endl;

 D(T.width(40);)

 T << s << endl;

 D(T.setf(ios::left, ios::adjustfield);)

 D(T.width(40);)

 T << s << endl;

 D(T.unsetf(ios::showpoint);)

 D(T.unsetf(ios::unitbuf);)

// D(T.unsetf(ios::stdio);) // SOMETHING MAY HAVE CHANGED
} ///:~

Seeking in iostreams

Each type of iostream has a concept of where its “next” character will come from (if it’s an istream) or go (if it’s an ostream). In some situations you may want to move this stream position. You can do it using two models: One uses an absolute location in the stream called the streampos; the second works like the Standard C library functions fseek() for a file and moves a given number of bytes from the beginning, end, or current position in the file.

The streampos approach requires that you first call a “tell” function: tellp() for an ostream or tellg() for an istream. (The “p” refers to the “put pointer” and the “g” refers to the “get pointer.”) This function returns a streampos you can later use in the single-argument version of seekp() for an ostream or seekg() for an istream, when you want to return to that position in the stream.

The second approach is a relative seek and uses overloaded versions of seekp() and seekg(). The first argument is the number of bytes to move: it may be positive or negative. The second argument is the seek direction:

	ios::beg
	From beginning of stream

	ios::cur
	Current position in stream

	ios::end
	From end of stream

Error handling

All the versions of get() and getline() return the input stream from which the characters came except for get() with no arguments, which returns the next character or EOF. If you get the input stream object back, you can ask it if it’s still OK. In fact, you can ask any iostream object if it’s OK using the member functions good(), eof(), fail(), and bad(). These return state information based on the eofbit (indicates the buffer is at the end of sequence), the failbit (indicates some operation has failed because of formatting issues or some other problem that does not affect the buffer) and the badbit (indicates something has gone wrong with the buffer).

However, as mentioned earlier, the state of an input stream generally gets corrupted in weird ways only when you’re trying to do input to specific types and the type read from the input is inconsistent with what is expected. Then of course you have the problem of what to do with the input stream to correct the problem. If you follow my advice and read input a line at a time or as a big glob of characters (with read()) and don’t attempt to use the input formatting functions except in simple cases, then all you’re concerned with is whether you’re at the end of the input (EOF). Fortunately, testing for this turns out to be simple and can be done inside of conditionals, such as while(cin) or if(cin). For now you’ll have to accept that when you use an input stream object in this context, the right value is safely, correctly and magically produced to indicate whether the object has reached the end of the input. You can also use the Boolean NOT operator !, as in if(!cin), to indicate the stream is not OK; that is, you’ve probably reached the end of input and should quit trying to read the stream.

There are times when the stream becomes not-OK, but you understand this condition and want to go on using it. For example, if you reach the end of an input file, the eofbit and failbit are set, so a conditional on that stream object will indicate the stream is no longer good. However, you may want to continue using the file, by seeking to an earlier position and reading more data. To correct the condition, simply call the clear() member function.[7]
