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SUMMARY

Gibbs sampling is a powerful technique for statistical inference. It involves little more than
sampling from full conditional distributions, which can be both complex and computationally
expensive to evaluate. Gilks and Wild have shown that in practice full conditionals are often log-
concave, and they proposed a method of adaptive rejection sampling for efficiently sampling from
univariate log-concave distributions. In this paper, to deal with non-log-concave full conditional
distributions, we generalize adaptive rejection sampling to include a Hastings—Metropolis algorithm
step. One important field of application in which statistical models may lead to non-log-concave
full conditionals is population pharmacokinetics. Here, the relationship between drug dose and
blood or plasma concentration in a group of patients typically is modelled by using non-linear mixed
effects models. Often, the data used for analysis are routinely collected hospital measurements,
which tend to be noisy and irregular. Consequently, a robust (t-distributed) error structure is
appropriate to account for outlying observations and/or patients. We propose a robust non-linear
full probability model for population pharmacokinetic data. We demonstrate that our method
enables Bayesian inference for this model, through an analysis of antibiotic administration in
new-born babies.

Keywords: Bayesian computation; Gibbs sampling; Markov chain Monte Carlo method;
Metropolis algorithm; Pharmacokinetic model; Random variate generation

1. Introduction

Gibbs sampling (Geman and Geman, 1984; Gelfand and Smith, 1990) is a Markov
chain Monte Carlo (MCMC) techhique for drawing dependent samples from com-
plex high dimensional distributions. In the Bayesian context, these distributions are
usually posterior distributions of the model parameters, and samples produced by
the Gibbs sampler can be used straightforwardly for Bayesian inference. A good
introduction to Gibbs sampling is given by Casella and George (1992).

At each iteration of the Gibbs sampler, each parameter or set of parameters is
updated in turn by sampling a new value from its full conditional distribution. The
full conditional distribution of a parameter is its distribution conditional on the data
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and on the current values of all the other parameters. Thus, from one iteration
to the next, full conditional distributions change as the conditioning parameters
change. In a typical run of the Gibbs sampler, draws from millions of different full
conditional distributions are required, so methods for constructing full conditional
distributions and for sampling from them must be very efficient. Certain full con-
ditionals reduce analytically to well-known distributions, for which special methods
for efficient random variate generation are available. More usually no analytical
reduction is possible. For log-concave distributions efficient random variate genera-
tion can be achieved through adaptive rejection sampling (ARS) (Gilks and Wild,
1992). Gilks and Wild showed that many full conditional distributions encountered
in practice are log-concave. Dellaportas and Smith (1993) extended this result to
generalized linear models with canonical link, and George ef al. (1993) further
extended this result to conjugate likelihood distributions.

However, not all models of practical importance yield log-concave full condi-
tionals. One such example is the class of non-linear mixed effect models commonly
used to estimate pharmacokinetic and pharmacodynamic parameters. This paper
extends ARS to deal with distributions that are not log-concave by appending a
Hastings-Metropolis algorithm step (Metropolis et al., 1953; Hastings, 1970). In
Section 2 we give an example of the population pharmacokinetic data and models
which motivate this methodological development. We describe adaptive rejection
Metropolis sampling (ARMS) in Section 3, and in Section 4 we present the results
of a population pharmacokinetic analysis of the antibiotic gentamicin by using the
ARMS within Gibbs sampling algorithm. In Section 5 we briefly discuss other
approaches to sampling from non-log-concave full conditional distributions.

2. Population Pharmacokinetic Modelling

Population pharmacokinetics refers to the average behaviour and interindividual
variation in the way that a drug is absorbed, distributed and eliminated in the
subpopulation of patients for whom the drug is intended. Such information leads
to a better understanding of how drugs are handled by the body and can be used
to predict dosage requirements. The present example concerns the administration
of the antibiotic gentamicin to treat serious infections in new-born babies. The data
were originally analysed by Thomson et al. (1988) using the NONMEM software
(see Section 2.3). The aim of the anglysis is to estimate covariate-adjusted popula-
tion values and between-patient variability for the pharmacokinetic parameters
of interest.

2.1. Data

Typically, data used for population pharmacokinetic analysis are taken from the
routine hospital records of patients being treated with the drug. For example, Fig. 1
shows the data for one baby who was treated with gentamicin in the present applica-
tion. The arrows indicate the time of administration and magnitude of each dose
of drug. Following each intravenous dose, the concentration of drug in the blood
rises rapidly and then decreases over time until the next dose is administered. This
results in an underlying blood concentration curve something like the broken curve
in Fig. 1. Blood samples are taken from the patient at specific times to measure the
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Fig. 1. Pharmacokinetic data for one patient

actual value of this concentration. These measurements are indicated by crosses in
the figure.

The complete data set used in this study consists of repeated gentamicin dose (in
milligrams per kilogram) and blood concentration measurements on 113 babies.
Further details are given in Table 1. Covariate information is also available for each

baby as follows:

(@) X; =1 if there is moderate or severe asphyxia at birth (measured by an
APGAR score below 7) and X, = 0 otherwise;

(b) X, the reciprocal creatinine concentration (a measure of kidney function);

() X; =1 for immature babies (post-conceptual age 34 weeks or less) and
X; = 0 otherwise.

(The APGAR score is a universally recognized scoring system used to measure
a baby’s condition immediately after birth. It consists of assessing heart rate,
respiratory effort, muscle tone, reflex response and colour and scoring 0, 1 or 2
for each according to the degree to which they are present. This gives a maximal
score of 10 for a healthy baby.)

TABLE 1

Summary of the data
Variable Median Range
No. of gentamicin doses 7 2-24
No. of blood concentration measurements 2 1-9
Length of follow-up (days) 29 0.2-18.3
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The advantage of using observational (as opposed to experimental) pharmaco-
kinetic data is that the information is more representative of the population of
patients who are actually being treated with a given drug, and is available on many
more individuals than in the experimental setting. However, the measurements per
patient are often sparse and irregularly spaced and inherently noisy due to variation
in the timing of the routinely collected blood samples, analytical errors in measuring
the drug concentration, patients forgetting or refusing to take their drugs at the
correct time, and so on.

2.2. Pharmacokinetic Model
A simple diagrammatic representation of the pharmacokinetic process is shown
in Fig. 2. The body is represented as a single homogeneous compartment, into which
a dose of drug is administered via intravenous injection. The drug is then instan-
taneously distributed within the compartment and eventually eliminated from it.
The concentration of the drug in the compartment is described by the non-linear
equation

y0) = Lexpl - 0 5] M

where d is the dose administered at time s, y(#) is the concentration of drug in the
blood at time ¢ > s, and V and C are pharmacokinetic parameters called respectively
the volume of distribution (a proportionality constant relating the total amount of
drug in the body to the concentration of drug in the blood) and the clearance (the
volume of blood which is cleared of drug per unit time). If more than one dose
of drug is administered, the equation involves summation over previous doses (see
Section 2.4). Since V and C are not directly measurable they must be estimated
statistically to describe the pharmacokinetic characteristics of the drug.

2.3. Estimation of Population Pharmacokinetic Parameters

The estimation of population pharmacokinetic parameters is complicated by
the sparse noisy data and the non-linearity of the models used. Various iterative
approximate maximum likelihood approaches have been proposed (for example, see
Steimer et al. (1984) for a critical review). The most widely used method is based
on extended least squares (Beal, 198¢) and is implemented in the NONMEM soft-
ware package (Sheiner and Beal, 1980). However, these methods are somewhat
restricted by the implicit assumption of normality or log-normality of the underlying
parameter distributions. In addition, the NONMEM estimates have been shown
to be biased when the pharmacokinetic parameters are highly correlated (Steimer
et al., 1984). Alternatively, some researchers have used nonparametric maximum
likelihood methods to estimate population pharmacokinetic models (Mallet, 1986;
Davidian and Gallant, 1992), whereas Racine-Poon (1985) adopted a Bayesian

TR
INPUT .y OUTPUT
BODY

Fig.2. Simple diagrammatic representation of a one-compartment pharmacokinetic model
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approach and used an EM-type numerical algorithm to perform the parameter
estimation because of intractability of the resulting integrals. Wakefield ef al. (1994)
used Gibbs sampling, rather than numerical or analytical methods, to perform full
Bayesian inference for population pharmacokinetic models. In this paper we extend
the Gibbs sampling approach to a population pharmacokinetic model with a robust
error distribution.

2.4. Statistical Model

For statistical inference, we need to consider how the data arise from the under-
lying pharmacokinetic model described in Section 2.2. Let d; denote the /th drug
dose for the ith patient, s;, the time of administration of that dose, y;; the jth
measured blood concentration for patient / and ¢#; the time of that measurement.
To provide robustness against the possibility of outliers (a common problem in
pharmacokinetic data), we assume that z;; = log y;; follows a location- and scale-
shifted Student ¢-distribution on » = 10 degrees of freedom (see for example
DeGroot (1970), p. 42) with mean given by summing equation (1) over all previous
doses,

E(z;) = lOg[ Z %CXP{ —% (t;; — Sil)”, )
lity>sy 71 i

and variance o2. This model follows from equation (1) only under the assumption

of linear kinetics (i.e. that the relationship between dose and concentration remains

constant for all doses). Concentration is transformed to the logarithmic scale to

stabilize the error variance, which tends to be greater when E(y;;) is large. The

clearance and volume for patient i at time #;; are modelled deterministically:

logCi; = o; + B' (X, — X) 3)

and log V; = ¢;, where «; and ¢, are patient-specific random effects and X; is the
vector of covariates {X;, X,, X;} for patient i at time #;;. These covariates are
centred on their means X to reduce dependence between the elements of the
regression coefficient vector 8 in the simulated Markov chain. We follow Thomson
et al. (1988) in that V; does not depend on covariates; however, our model could
be extended to accommodate this. The random effects «; and ¢; are assumed
drawn from a bivariate normal population distribution with mean v and covariance
L. We assume vague conjugate prior distributions for the population parameters
v and I, for the regression parameters 8 and for the measurement error precision
7 (=1/0%). Thus, we have three stages in the model: stage 1,

log Z;; = log E(z;;| Vi, C;j) + €,
€~ 1,(0, 771);
stage 2,
logC; = o; + B (X;; — X),
log Vi = ¢;,

Q;
(d)’) -~ N(’Y’ E);
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stage 3,
B ~ N(0, 10000), for m = 1, 2, 3,

ol (2

-1 _ 5 -
£ W{Z’ (—5 105/]°

7~ Ga(0.2, 10).

Here 8, is the mth element of vector B, and Ga(0.2, 10) denotes a gamma distri-
bution with mean 0.02 and variance 0.002. The values specified for the prior mean
for 4 and the prior precision matrix for £-! were chosen according to previously
published estimates of gentamicin and other similar antibiotic pharmacokinetic
parameters (Zaske, 1992; Fattinger et al., 1991).

Fig. 3 represents our statistical model in the form of a directed acyclic graph
(Whittaker, 1990). Square nodes represent known quantities (data); round nodes
répresent unknown quantities (parameters); triangular nodes indicate deterministic
relationships. The graph clarifies the conditional independence assumptions that
are implicit in the mode] specification.

patients

population

Fig.3. Graphical representation of a pharmacokinetic model
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2.5. Full Conditional Distributions

Estimation of the above model by using Gibbs sampling requires full conditional
distributions to be constructed and sampled from, as discussed in Section 1. The
full conditional distribution for any parameter in a directed acyclic graph is pro-
portional to the product of all the terms in the model which contain it (hence
full conditionals are usually known only up to a constant of proportionality —see
Section 3.1). Thus, for example, the logarithm of the full conditional distribution
for the mth element of the coefficient vector B is

1 1
log f(B) & =5 (8 = ) T(B —p) = 5 (Zlog[l +V_Lz{z.-,~

i

, - 2
_ log( Z d;¢. exp[— exp{o; + B’ (X;; — X)}(t,-- _S”)])} ])

I:Ig > Sy exp ¢i

Q)

where pu and T are the prior mean and precision matrix of 3. Thus the non-linear
model (2) and the z-distributed error structure lead to particularly complicated
conditional probability densities which are not log-concave and are computationally
very expensive to evaluate. To sample from this we modify the ARS algorithm by
appending a Metropolis step. Thereby the scope of ARS is extended to non-log-
concave distributions such as expression (4).

3. Adaptive Rejection Metropolis Sampling

Before describing ARMS we first describe its constituent methodologies: rejection
sampling, ARS and the Metropolis algorithm.

3.1. Rejection Sampling

Rejection sampling (Ripley, 1987) is a method for drawing independent samples
from a distribution (proportional to) f(x). For this we require a sampling distribu-
tion g(x) from which samples can be readily drawn and for which there is a finite
constant m such that mg(x) = f(x), ¥ xe D, where D denotes the domain of f. For
practical purposes we also require that m be easily calculable. A single observation
Xg from f(x) is then drawn by the following algorithm:

step 1, sample X from g(x); ,
step 2, sample U from uniform(0, 1);
step 3, if U> f(X)/mg(X) then {
rejection step:
go back to step 1;}
else {
acceptance step:
set Xz = X;};
step 4, return Xg.
Further iterations of steps 1-4 will produce independent samples from f.

Note that rejection sampling does not involve evaluation of the integration
constant [, f(x) dx. This is very convenient for sampling from full conditional
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distributions, which are typically known only up to a constant of proportionality
(for example, see expression (4)- above).

The expected number of iterations of steps 1-3 is m, each iteration involving an
evaluation of f(X) at step 3. Thus unless m is small, which will be difficult to
achieve in practice except in special cases, rejection sampling will involve many
evaluations of f(X). This is particularly critical when f is a full conditional
distribution, as the evaluation of f(X) at any point X can be very expensive
computationally.

3.2. Adaptive Rejection Sampling

ARS reduces the number of evaluations of f(X) in rejection sampling by improving
the sampling density g(x) after each rejection so that m decreases monotonically.
The improvement is made by incorporating into g(x) information about f(x)
obtained at each of the previously rejected points. For univariate log-concave
densities this can be done by the method of Gilks and Wild (1992), or alternatively
by the method of Gilks (1992). We describe the latter. For this, the domain D of
fis an interval of the real line, densities are with respect to Lebesgue measure, and
we define log-concavity of f as '

Inf(a) —2Inf(b) +Inf(c) <O va, b, ceDsuchthata<b<c. (5

This definition does not assume continuity in derivatives of f and includes, for
example, linear and piecewise linear continuous functions.

Let S, ={x;; i=0, ..., n+ 1} denote a current set of abscissae in ascending
order, where x; and X, . ; are the possibly infinite lower and upper limits of D. For
1<i<<j<nlet Lijj(x; S,) denote the straight line through points [x;, Inf(x;)]
and [x;, Inf(x;)], and for other (i, j) let L;;(x; S,) be undefined.

Define a piecewise linear function 4,(x):

h,(x) =min[L;_;(x; S;), Liy1,i+20% S) 1, Xi S X< X1, 6)

where we notationally suppress the dependence of 4,(x) on S,. Here we establish
the convention that if b is undefined then min(a, b) = min(b, a) = a. As a
consequence of the assumed log-concavity of f(x), h,(x) is an envelope for
In f(x), i.e. h,(x) = In f(x) everywhere in D. This is illustrated for n = 4 in Fig. 4.
We can now perform rejection sapling with the sampling distribution given by

&n(x) = ;nl— exp h,(x) @)

n

where
m, = Sexp h,(x) dx.

Note that g,(x) is a piecewise exponential distribution and can be sampled directly
(Gilks and Wild, 1992).

The important feature of the sampling distribution g,(x) defined in equation
(7) is that it can be updated each time that f(X) is evaluated. We have then the
following algorithm for ARS:
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b, ()

log f(x)

Fig. 4. Adaptive rejection function A4(x) (
function f(x): X is sampled from A4 (x)

) constructed from equation (6) for a log-concave

step 0, initialize n and S,;
step 1, sample X from g,(x);
step 2, sample U from uniform(0, 1);
step 3, if U> f(X)/exph,(X) then {
rejection step:
set Sn+1 = S,, U {X};
relabel points in S, ., ; in ascending order;
increment n and go back to step 1;}
else {
acceptance step:
set Xp = X;};
step 4, return X, .

The relabelling in step 3 is for notational consistency with equation (6). At each
iteration of ARS the number of points of contact between In f(x) and #4,(x) is
increased by 1, thereby reducing m, and decreasing the probability of rejection at
step 3. This is illustrated in Fig.5. Further iterations of steps 1-4 will produce
independent samples from f, whilge h,(x) is continually improving, making rejec-
tions increasingly less likely. '

This method works straightforwardly if domain D is bounded on the left and
right. If D is unbounded on the left, starting abscissae should be chosen so that
the gradient of L, ,(x; S,) is positive. Similarly, if D is unbounded on the right
then the gradient of L,_, ,(x; S,) should be negative.

The average number of iterations of ARS required to accept one point depends
on the initial S, and on f. However, we have found that, starting with n = 3, on
average just two or three iterations are typically required, although with very poor
starting values more may be necessary (Gilks, 1992). If f is a full conditional
distribution, the envelope function exp 4,(x) from the previous iteration of the
Gibbs sampler may be used to construct approximate 5%, 50% and 95% centiles
of f, for use as starting abscissae, although in many applications fixed starting
abscissae will be adequate.
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hy(x)

T log f(x)
Fig. 5. Updated current set S5 and rejection function A5 (x) (=) after incorporating X in Fig. 4

For densities f(x) which are not log-concave, ARS cannot be used as 4,(x) may
not be an envelope for In f(x). To deal with non-log-concave densities we propose
to append a Hastings-Metropolis algorithm step to ARS. We first briefly describe
the Hastings-Metropolis algorithm.

3.3. Hastings-Metropolis Algorithm

The Metropolis algorithm (Metropolis ef al., 1953) is, like the Gibbs sampler, an
MCMC method. We describe the generalization of the algorithm given by Hastings
(1970), which requires a proposal distribution q( |z) from which samples X can
be drawn for any z in D. The algorithm runs as follows:

step 0, set starting value Xx,; set iteration counter i = 0;
step 1, sample X from g(x|x;);
step 2, sample U from uniform(0, 1);

f(X)q(inX)}{
f(x) q(X|x)
rejection step:

set X; 1 = Xi3 }

step 3, if U > min{l,

else {
acceptance step:
set X;,1 =X };
step 4, increment i and go back to step 1.

After suitably many iterations of this algorithm, the samples {x;} can be consid-
ered to be dependent samples from f(x).

Tierney (1991) suggested the use of the Hastings-Metropolis algorithm within
Gibbs sampling to sample from full conditional distributions. Indeed, this was the
original form of the Metropolis algorithm (Metropolis ef al., 1953). For this x,
should be the value of x at the start of the current Gibbs iteration, and x; will be
the new value for x. Just one iteration of steps 1-4 suffices to preserve the stationary
distribution of the Gibbs chain. However, this chain may be slower to converge
through rejections at step 3.
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3.4. Adaptive Rejection Metropolis Sampling

We noted in Section 3.2 that ARS cannot be used to sample from non-log-
concave distributions. To sample from such distributions, we could abandon
rejection sampling in favour of the Hastings-Metropolis algorithm, applied to
update one parameter (or one set of parameters) at a time (Section 3.3). However,
to avoid high probabilities of rejection (and hence slower convergence of the chain)
it may be helpful to adapt the proposal density q to the shape of the full conditional
density f (Gelman, 1992). Since ARS provides a way of adapting a function to f,
we propose to use ARS to create a good proposal density. We then append to ARS
a single Hastings-Metropolis step, thus creating an ARMS within Gibbs chain.
However, unlike ARS, ARMS will not produce independent samples from f. ARMS
is an adaptive generalization of the rejection sampling chain proposed by Tierney
(1991).

Let (x, y) denote the complete set of variables being sampled by the Gibbs
sampler. As before, x is the current variable to be sampled from its full conditional
density (proportional to) f(x), where we notationally suppress the conditioning on
y. Let X, denote the current value of x at a given iteration of the Gibbs sampler.
The aim then is to replace X, with a new value Xy, from f.

For ARMS we construct a function A, (x) which is slightly more complex than
in expression (6):

hn(x) = max[Li,i+l(x’ Sn)a min{Li—l,i(x’ Sn)’ Li+1,i+2(xa Sn)}],
XiSX< Xigns ®

where, if b is undefined, min(a, ) = min(b, a) = max(a, b) = max(b, a) =a.In
general, A,(x) will not be an envelope of Inf(x), as illustrated in Fig.6. The
sampling density g,(x) is then given by equation (7) as before. Starting abscissae
for ARMS must be independent of X, as discussed below. The algorithm for
ARMS then runs as follows:

step 0, initialize n and S, independently of X, ;
step 1, sample X from g,(x);
step 2, sample U from uniform(0, 1);

hs(x)

log f(x)

Fig. 6. Adaptive rejection function /5 (x) (===} for a non-log-concave function f(x), constructed
from equation (8)
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step 3, if U> f(X)/exp h,(X) then {
ARS rejection step:
set S,,1=3S8,U {X};
relabel points in S, ., in ascending order;
increment » and go back to step 1;}
else {
ARS acceptance step:
set X5 = X;};
step 4, sample U from uniform(0, 1);

f(XA) min{f(Xcur)9 €Xp hn(Xcur)}
’ f(Xcur) mln{f(XA)’ €Xp hn (XA)}

Hastings-Metropolis rejection step:
set Xy = Xcur;}

step 5, if U > min[l ] then {

else {
Hastings-Metropolis acceptance step:
set Xy = Xas}s
step 6, return Xy,.

When f is log-concave then A, in equation (8) reduces to expression (6) and is an
envelope for In f, so step 5 will always accept. Thus ARMS reduces to ARS for
log-concave densities.

The proof that ARMS preserves the stationary distribution of the Gibbs sampler
is an application of the auxiliary variables method (Besag and Green, 1993). The
whole of the following argument conditions on y, so we shall not express this
condition explicitly. Let N denote the value of n on reaching step 4. Then Sy
determines the final state of the A, (x)-function. Conditionally on Sy and X_,,, X4
is a sample from

q (x| Xy, Sy) < min{f(x), exp hy(x)}. )]

As the starting abscissae for ARMS are drawn independently of X, , the right-hand
side of expression (9) does not depend on X_,,. Thus we can consider g (x| X, Sy)
as an independence Hastings-Metropolis proposal density, where S, represents
auxiliary variables. Let P(Xy|X.., Sy) be the Markov transition function (for
moving from X, to Xy) associated with the proposal density q (x| X, Sy) and
the acceptance-rejection function in step 5 above. Then it is straightforward to
show that the detailed balance equation

f(Xcur) P(XMIXcur’ SN) =f(XM) P(XcurIXMi SN) (10)

holds for every Sy, and by integrating equation (10) with respect to X, we see
that Xy is independent of S, and has density f. Thus X, is a sample from the
full conditional for x, so ARMS within Gibbs sampling preserves the stationary
distribution of the Gibbs chain.

This proof depends critically on the independence of Sy and X, . If starting
abscissae were allowed to depend on X, we would need to replace f( ) in step 5
and equations (9) and (10) by the awkward density f( |Sy), where

S(x|8n) o f(x) pr(Sy|x = Xeur).
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There is no need to iterate through steps 1-6 before updating y. However, the
probability of moving away from X, can be increased through a fixed number
of additional iterations of ARMS, setting X, = Xy, # = N and S, = Sy in step 1
at the second and subsequent ARMS iterations. This is permissible because, as
noted above, Sy and X}, are independent at the end of step 6, and hence X, and
S, will be independent at the start of the next ARMS iteration, as required by the
theory. However, the stationary distribution of the ARMS within Gibbs chain
would be affected if the decision to use extra iterations was allowed to depend in
any way on previous rejections at step 5.

The probability of rejection at step 5 can be reduced through choosing good
starting abscissae in S,. An effective way of doing this is to base starting abscissae
on the exp Ay (x) function from the previous Gibbs iteration, as described for ARS
in Section 3.2. This strategy for choosing starting abscissae is valid because Ay (x)
from the previous Gibbs iteration is independent of X_,. . This follows because X_,,
is identically X, from the previous Gibbs iteration, Xy, and Sy are independent
after each iteration of ARMS (as noted above) and Sy defines Ay (x) completely.

This method works straightforwardly if domain D is bounded on the left and
right. For D unbounded on the left or right, starting abscissae should be chosen
as described for ARS in Section 3.2.

4. Estimation of Gentamicin Pharmacokinetics by using the Adaptive Rejection
Metropolis Sampling within Gibbs Sampler

The population pharmacokinetic model for the gentamicin data discussed in
Section 2 was estimated by using the ARMS within Gibbs algorithm. The Gibbs
sampler was run for 15000 iterations on each of two separate occasions, using
different overdispersed starting values for each run. These starting values were
selected arbitrarily to be ‘too small’ for one run and ‘too large’ for the other, on
the basis of physiological considerations and prior information from previous
studies of gentamicin pharmacokinetics in infants. For ARMS, for each parameter,
six initial abscissae were used, based on the 5%, 30%, 45%, 55%, 70% and 95%
centiles of the hy(x)-function from the previous Gibbs iteration (see Section 3.4
for a justification of this). The whole process took a total of 10h on a Sun SPARC
workstation (model 30).

The non-log-concavity of the full conditionals to be sampled from is illustrated
in Fig.7, which shows the logarithm of the full conditional distribution for the
regression parameter 3; at one randomly chosen iteration of the ARMS within
Gibbs sampler. Consecutive sampled values for 8, and 3, from each run are
plotted as time series in Fig. 8. Visual inspection suggests that the chains from
the second run converged quite rapidly, but those from the first took over 10000
iterations to stabilize. The method of Gelman and Rubin (1992) was used to assess
convergence, and on this basis the last 3000 iterations from each run were pooled
to form a sample for posterior inference.

4.1. Performance of Adaptive Rejection Metropolis Sampling
Table 2 describes the operating characteristics of ARMS for a selection of
the model parameters. The number of density evaluations reported is the number



468 GILKS, BEST AND TAN

1IN
=4
a o
= O
-
o
o
8
oY
7 T T
20 -10 0
B,

Fig. 7. Full conditional distribution for B; at a randomly chosen iteration of the ARMS within
Gibbs sampler
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Fig.8. Consecutively sampled values for two of the regression coefficients (8; and 8,) for (a) run
1 and (b) run 2 of the Gibbs sampler

of evaluations of f(X) required to sample one point from the full conditional,
including the six evaluations at the starting abscissae. A further indicator of the
performance of ARMS is given in the final column of Table 2, which shows the
proportion of iterations at which rejection occurred at step 5 of ARMS. This is
important as high rejection rates slow convergence of the ARMS within Gibbs
chain.
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TABLE 2

Operating characteristics of ARMS for selected model parameters
Parameter Mean no. of 95% interval for No.t of iterations at

density the no. of density which Metropolis step
evaluations evaluations rejected
Run 1 Run 2 Run 1 Run 2 Run 1 Run 2

ay 8.4 8.4 8, 12) @8, 12) 0 0
b1 8.5 8.5 @8, 13) @8, 13) 0 1
B 10.3 10.2 8, 16) 8, 16) 16 8
B2 8.4 8.3 @8, 11) @8, 11) 0 0
B3 10.5 10.4 @8, 17 @8, 17) 8 5
T 10.0 9.6 @8, 13) @8, 19) 0 1

1Out of a total of 15000 iterations.

4.2. Posterior Distributions

The mean and 95% credible intervals for the posterior distribution of the main
parameters are given in Table 3. These results are in line with other published values
for gentamicin pharmacokinetic parameters (Thomson ef al., 1988). The regression
coefficients associated with clearance seem reasonable, with the negative values
obtained for 3, and (B; corresponding to the expected impairment in gentamicin
clearance associated with low APGAR score and immature babies. Similarly, 3,,
the effect of reciprocal creatinine concentration, is large and positive which suggests
that gentamicin clearance depends on kidney function, in accordance with the
known renal elimination of the drug. However, the root residual error variance of
0.38 corresponds to a coefficient of variation of about 38%, which is rather high.
This could indicate a lack of model fit: we are currently investigating this.

TABLE 3
Posterior means and 95% credible intervals for selected parameters

Parameter Posterior mean 95% credible interval
exp{a; + 3(31(1,2 — X}: C for patient 1 at time 1, 0.044 (0.031, 0.061)
(kg~'h™
exp ¢1: V for patient 1 (1 kg'l) 0.49 (0.39, 0.61)
exp v : population mean of random effects for C (1 kg‘1 h~ 1) 0.049 (0.045, 0.053)
exp v: population mean of random effects for V (I kg'l) 0.49 (0.43, 0.57)
s/E“ x 100%: approximate coefficient of variation in C 28.2% (18.9%, 50.2%)
\/}322 x 100%: approximate coefficient of variation in V' 13.4% (5.0%, 48.4%)
p: correlation between C and V' 0.23 (-0.36, 0.70)
By: coefficient for APGAR score -0.10 (—0.26, 0.06)
By coefficient for reciprocal creatinine 229 (10.4, 35.2)
B3: coefficient for immature babies -0.22 (-0.37, —0.07)

J(1/7): square root of residual error variance 0.38 (0.34, 0.44)
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5. Discussion

5.1. Methodology

We have shown how ARS can be generalized, through addition of a Hastings-
Metropolis step, to sample from non-log-concave distributions encountered in
applications of Gibbs sampling. ARMS can also be used straightforwardly in other
MCMC methods that require the sampling of full conditional distributions, such
as the hit-and-run algorithm (Belisle ef al., 1990) and adaptive direction sampling
(Gilks and Roberts, 1994).

ARMS will be most computationally efficient when few rejections at the Hastings-
Metropolis step are encountered, and this will happen when full conditionals are
nearly log-concave. In many situations this is indeed so, where non-log-concavity
occurs well into the tails of full conditionals. For log-concave full conditionals,
ARMS reduces to ARS. Thus ARMS provides a way of retaining the efficiency
of ARS while accommodating non-log-concavity when it is present. As we have
shown in the analysis of a robust non-linear pharmacokinetic model, ARMS can
accommodate quite severe non-log-concavity. In difficult problems the use of a
larger number of ARMS starting abscissae, together with other strategies discussed
in Section 3.4, should help to reduce high Hastings—Metropolis rejection rates.

Other approaches to dealing with awkward full conditional distributions have
been proposed. The ratio of uniforms method has been successfully used to
sample from univariate full conditionals in difficult pharmacokinetic problems
(Wakefield et al., 1991, 1994). Sampling from full conditional distributions can
be avoided altogether by updating parameters instead via the Hastings-Metropolis
algorithm (see Section 3.3). This can be applied to update single parameters, sets
of parameters or all parameters simultaneously. Hastings-Metropolis proposal
distributions can be designed to approximate full conditional distributions (Gelman,
1992) as in ARMS, but this is not necessary to obtain samples from the required
stationary distribution (Tierney, 1991). Indeed, more efficient Markov chain simula-
tion can sometimes be obtained with proposal distributions which differ substan-
tially from full conditionals (Besag and Green, 1993). In special situations where
full conditional distributions are all of the same algebraic form, e.g. in lattice-based
image analysis models, exploratory work may help to identify efficient proposal
distributions. However, as yet there are no generally applicable methods for
identifying efficient proposal distributions; conversely there is a real danger of
employing very inefficient proposal distributions. Thus, the use of proposal distri-
butions which approximate full conditional distributions may be a relatively safe
option, and ARMS is one way of constructing these. Gelfand and Lee (1993)
compared several methods of dealing with awkward full conditional distributions,
although their performance data for ARS are somewhat at odds with those of
Gilks and Wild (1992).

A disadvantage of ARMS is that it relies on single-parameter updating. Multi-
variate updating through use of carefully tailored Hastings-Metropolis proposal
distributions can produce a rapidly mixing Markov chain. In problems with a
small or moderate number of parameters, the adaptive approach of Mueller (1992)
may work. However, as noted above, generally applicable methods for constructing
efficient proposal distributions have yet to be devised. Generally, single-parameter
updating can be made more efficient through sensible parameterization of the
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model, to reduce posterior correlations. In particular, Wakefield (1993) noted that
the volume and clearance parameters in the pharmacokinetic model of Section 2
are approximately independent.

5.2. Application

The simple one-compartment pharmacokinetic model employed in this study illus-
trates the general problem of statistical inference with non-linear mixed effects models
that are commonly encountered in pharmacokinetic and pharmacodynamic analysis.
Important extensions to this model include the assumption of a #-distribution or
a mixture density for the population mean parameters to ‘downweight’ outlying
individuals as well as outlying measurements or to allow for multimodality respec-
tively. More complex structural models such as a two-compartment pharmaco-
kinetic model or a combined pharmacokinetic-pharmacodynamic model are also
of major scientific interest. For each model, it should be straightforward to apply
the ARMS within Gibbs algorithm described here to estimate the required model
parameters.

5.3. Computer Programs
Computer programs for ARMS (written in C) and for ARS (written in Fortran)
are available from the authors on request.
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