
Linear regression

• Linear regression is a simple approach to supervised
learning. It assumes that the dependence of Y on
X1, X2, . . . Xp is linear.

• True regression functions are never linear!
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Linearity assumption?

η(x) = β0 + β1x1 + β2x2 + . . . βpxp

Almost always thought of as an approximation to the truth.

Functions in nature are rarely linear.
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• although it may seem overly simplistic, linear regression is
extremely useful both conceptually and practically.
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Linear regression for the advertising data

Consider the advertising data shown on the next slide.

Questions we might ask:

• Is there a relationship between advertising budget and
sales?

• How strong is the relationship between advertising budget
and sales?

• Which media contribute to sales?

• How accurately can we predict future sales?

• Is the relationship linear?

• Is there synergy among the advertising media?
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Advertising data
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Simple linear regression using a single predictor X.

• We assume a model

Y = β0 + β1X + ε,

where β0 and β1 are two unknown constants that represent
the intercept and slope, also known as coefficients or
parameters, and ε is the error term.

• Given some estimates β̂0 and β̂1 for the model coefficients,
we predict future sales using

ŷ = β̂0 + β̂1x,

where ŷ indicates a prediction of Y on the basis of X = x.
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Estimation of the parameters by least squares
• Let ŷi = β̂0 + β̂1xi be the prediction for Y based on the ith

value of X. Then ei = yi − ŷi represents the ith residual

• We define the residual sum of squares (RSS) as

RSS = e21 + e22 + · · ·+ e2n,

or equivalently as

RSS = (y1−β̂0−β̂1x1)2+(y2−β̂0−β̂1x2)2+. . .+(yn−β̂0−β̂1xn)2.

• The least squares approach chooses β̂0 and β̂1 to minimize
the RSS. The minimizing values can be shown to be

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
,

β̂0 = ȳ − β̂1x̄,
where ȳ ≡ 1

n

∑n
i=1 yi and x̄ ≡ 1

n

∑n
i=1 xi are the sample

means.
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Example: advertising data

4 3. Linear Regression

between the ith observed response value and the ith response value that is
predicted by our linear model. We define the residual sum of squares (RSS)

residual sum of
squaresas

RSS = e21 + e22 + · · ·+ e2n,

or equivalently as

RSS = (y1− β̂0− β̂1x1)
2+(y2− β̂0− β̂1x2)

2+ . . .+(yn− β̂0− β̂1xn)
2. (3.3)

The least squares approach chooses β̂0 and β̂1 to minimize the RSS. Using
some calculus, one can show that the minimizers are

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
,

β̂0 = ȳ − β̂1x̄,

(3.4)

where ȳ ≡ 1
n

∑n
i=1 yi and x̄ ≡ 1

n

∑n
i=1 xi are the sample means. In other

words, (3.4) defines the least squares coefficient estimates for simple linear
regression.

0 50 100 150 200 250 300

5
10

15
20

25

TV

S
al

es

FIGURE 3.1. For the Advertising data, the least squares fit for the regression
of sales onto TV is shown. The fit is found by minimizing the sum of squared
errors. Each grey line segment represents an error, and the fit makes a compro-
mise by averaging their squares. In this case a linear fit captures the essence of
the relationship, although it is somewhat deficient in the left of the plot.

Figure 3.1 displays the simple linear regression fit to the Advertising

data, where β̂0 = 7.03 and β̂1 = 0.0475. In other words, according to this

The least squares fit for the regression of sales onto TV.
In this case a linear fit captures the essence of the relationship,
although it is somewhat deficient in the left of the plot.
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Assessing the Accuracy of the Coefficient Estimates

• The standard error of an estimator reflects how it varies
under repeated sampling. We have

SE(β̂1)
2

=
σ2∑n

i=1(xi − x̄)2
, SE(β̂0)

2
= σ2

[
1

n
+

x̄2∑n
i=1(xi − x̄)2

]
,

where σ2 = Var(ε)

• These standard errors can be used to compute confidence
intervals. A 95% confidence interval is defined as a range of
values such that with 95% probability, the range will
contain the true unknown value of the parameter. It has
the form

β̂1 ± 2 · SE(β̂1).
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Confidence intervals — continued

That is, there is approximately a 95% chance that the interval

[
β̂1 − 2 · SE(β̂1), β̂1 + 2 · SE(β̂1)

]

will contain the true value of β1 (under a scenario where we got
repeated samples like the present sample)

For the advertising data, the 95% confidence interval for β1 is
[0.042, 0.053]

8 / 48



Confidence intervals — continued

That is, there is approximately a 95% chance that the interval

[
β̂1 − 2 · SE(β̂1), β̂1 + 2 · SE(β̂1)

]

will contain the true value of β1 (under a scenario where we got
repeated samples like the present sample)

For the advertising data, the 95% confidence interval for β1 is
[0.042, 0.053]

8 / 48



Hypothesis testing

• Standard errors can also be used to perform hypothesis
tests on the coefficients. The most common hypothesis test
involves testing the null hypothesis of

H0 : There is no relationship between X and Y

versus the alternative hypothesis

HA : There is some relationship between X and Y .

• Mathematically, this corresponds to testing

H0 : β1 = 0

versus
HA : β1 6= 0,

since if β1 = 0 then the model reduces to Y = β0 + ε, and
X is not associated with Y .
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Hypothesis testing — continued

• To test the null hypothesis, we compute a t-statistic, given
by

t =
β̂1 − 0

SE(β̂1)
,

• This will have a t-distribution with n− 2 degrees of
freedom, assuming β1 = 0.
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Results for the advertising data

Coefficient Std. Error t-statistic p-value

Intercept 7.0325 0.4578 15.36 < 0.0001
TV 0.0475 0.0027 17.67 < 0.0001
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Assessing the Overall Accuracy of the Model

• We compute the Residual Standard Error

RSE =

√
1

n− 2
RSS =

√√√√ 1

n− 2

n∑

i=1

(yi − ŷi)2,

where the residual sum-of-squares is RSS =
∑n

i=1(yi− ŷi)2.

• R-squared or fraction of variance explained is

R2 =
TSS− RSS

TSS
= 1− RSS

TSS

where TSS =
∑n

i=1(yi − ȳ)2 is the total sum of squares.

• It can be shown that in this simple linear regression setting
that R2 = r2, where r is the correlation between X and Y :

r =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
.
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Advertising data results

Quantity Value

Residual Standard Error 3.26
R2 0.612
F-statistic 312.1
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Multiple Linear Regression

• Here our model is

Y = β0 + β1X1 + β2X2 + · · ·+ βpXp + ε,

• We interpret βj as the average effect on Y of a one unit
increase in Xj , holding all other predictors fixed. In the
advertising example, the model becomes

sales = β0 + β1 × TV + β2 × radio + β3 × newspaper + ε.
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Interpreting regression coefficients

• The ideal scenario is when the predictors are uncorrelated
— a balanced design:

- Each coefficient can be estimated and tested separately.
- Interpretations such as “a unit change in Xj is associated

with a βj change in Y , while all the other variables stay
fixed”, are possible.

• Correlations amongst predictors cause problems:

- The variance of all coefficients tends to increase, sometimes
dramatically

- Interpretations become hazardous — when Xj changes,
everything else changes.

• Claims of causality should be avoided for observational
data.
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The woes of (interpreting) regression coefficients

“Data Analysis and Regression” Mosteller and Tukey 1977

• a regression coefficient βj estimates the expected change in
Y per unit change in Xj , with all other predictors held
fixed. But predictors usually change together!

• Example: Y total amount of change in your pocket;
X1 = # of coins; X2 = # of pennies, nickels and dimes. By
itself, regression coefficient of Y on X2 will be > 0. But
how about with X1 in model?

• Y= number of tackles by a football player in a season; W
and H are his weight and height. Fitted regression model
is Ŷ = b0 + .50W − .10H. How do we interpret β̂2 < 0?
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Estimation and Prediction for Multiple Regression

• Given estimates β̂0, β̂1, . . . β̂p, we can make predictions
using the formula

ŷ = β̂0 + β̂1x1 + β̂2x2 + · · ·+ β̂pxp.

• We estimate β0, β1, . . . , βp as the values that minimize the
sum of squared residuals

RSS =

n∑

i=1

(yi − ŷi)2

=

n∑

i=1

(yi − β̂0 − β̂1xi1 − β̂2xi2 − · · · − β̂pxip)2.

This is done using standard statistical software. The values
β̂0, β̂1, . . . , β̂p that minimize RSS are the multiple least
squares regression coefficient estimates.
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3.2 Multiple Linear Regression 15

X1

X2

Y

FIGURE 3.4. In a three-dimensional setting, with two predictors and one re-
sponse, the least squares regression line becomes a plane. The plane is chosen
to minimize the sum of the squared vertical distances between each observation
(shown in red) and the plane.

The parameters are estimated using the same least squares approach that
we saw in the context of simple linear regression. We choose β0, β1, . . . , βp

to minimize the sum of squared residuals

RSS =

n∑

i=1

(yi − ŷi)
2

=
n∑

i=1

(yi − β̂0 − β̂1xi1 − β̂2xi2 − · · · − β̂pxip)
2. (3.22)

The values β̂0, β̂1, . . . , β̂p that minimize (3.22) are the multiple least squares
regression coefficient estimates. Unlike the simple linear regression esti-
mates given in (3.4), the multiple regression coefficient estimates have
somewhat complicated forms that are most easily represented using ma-
trix algebra. For this reason, we do not provide them here. Any statistical
software package can be used to compute these coefficient estimates, and
later in this chapter we will show how this can be done in R. Figure 3.4
illustrates an example of the least squares fit to a toy data set with p = 2
predictors.
Table 3.4 displays the multiple regression coefficient estimates when TV,

radio, and newspaper advertising budgets are used to predict product sales
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Results for advertising data

Coefficient Std. Error t-statistic p-value

Intercept 2.939 0.3119 9.42 < 0.0001
TV 0.046 0.0014 32.81 < 0.0001
radio 0.189 0.0086 21.89 < 0.0001
newspaper -0.001 0.0059 -0.18 0.8599

Correlations:
TV radio newspaper sales

TV 1.0000 0.0548 0.0567 0.7822
radio 1.0000 0.3541 0.5762
newspaper 1.0000 0.2283
sales 1.0000

20 / 48



Some important questions

1. Is at least one of the predictors X1, X2, . . . , Xp useful in
predicting the response?

2. Do all the predictors help to explain Y , or is only a subset
of the predictors useful?

3. How well does the model fit the data?

4. Given a set of predictor values, what response value should
we predict, and how accurate is our prediction?
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Is at least one predictor useful?

For the first question, we can use the F-statistic

F =
(TSS− RSS)/p

RSS/(n− p− 1)
∼ Fp,n−p−1

Quantity Value

Residual Standard Error 1.69
R2 0.897
F-statistic 570
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