Output stream formatting

The whole goal of this effort, and all these different types of iostreams, is to allow you to easily move and translate bytes from one place to another. It certainly wouldn’t be very useful if you couldn’t do all the formatting with the printf() family of functions. In this section, you’ll learn all the output formatting functions that are available for iostreams, so you can get your bytes the way you want them.

The formatting functions in iostreams can be somewhat confusing at first because there’s often more than one way to control the formatting: through both member functions and manipulators. To further confuse things, there is a generic member function to set state flags to control formatting, such as left- or right-justification, whether to use uppercase letters for hex notation, whether to always use a decimal point for floating-point values, and so on. On the other hand, there are specific member functions to set and read values for the fill character, the field width, and the precision.

In an attempt to clarify all this, the internal formatting data of an iostream is examined first, along with the member functions that can modify that data. (Everything can be controlled through the member functions.) The manipulators are covered separately.

Internal formatting data

The class ios (which you can see in the header file <iostream>) contains data members to store all the formatting data pertaining to that stream. Some of this data has a range of values and is stored in variables: the floating-point precision, the output field width, and the character used to pad the output (normally a space). The rest of the formatting is determined by flags, which are usually combined to save space and are referred to collectively as the format flags. You can find out the value of the format flags with the ios::flags() member function, which takes no arguments and returns a long (typedefed to fmtflags) that contains the current format flags. All the rest of the functions make changes to the format flags and return the previous value of the format flags.

fmtflags ios::flags(fmtflags newflags);

fmtflags ios::setf(fmtflags ored_flag);

fmtflags ios::unsetf(fmtflags clear_flag);

fmtflags ios::setf(fmtflags bits, fmtflags field);

The first function forces all the flags to change, which you do sometimes. More often, you change one flag at a time using the remaining three functions.

The use of setf() can seem more confusing: To know which overloaded version to use, you must know what type of flag you’re changing. There are two types of flags: ones that are simply on or off, and ones that work in a group with other flags. The on/off flags are the simplest to understand because you turn them on with setf(fmtflags) and off with unsetf(fmtflags). These flags are

	on/off flag
	effect

	ios::skipws
	Skip white space. (For input; this is the default.)

	ios::showbase
	Indicate the numeric base (dec, oct, or hex) when printing an integral value. The format used can be read by the C++ compiler.

	ios::showpoint
	Show decimal point and trailing zeros for floating-point values.

	ios::uppercase
	Display uppercase A-F for hexadecimal values and E for scientific values.

	ios::showpos
	Show plus sign (+) for positive values.

	ios::unitbuf
	“Unit buffering.” The stream is flushed after each insertion.

	ios::stdio
	Synchronizes the stream with the C standard I/O system.

For example, to show the plus sign for cout, you say cout.setf(ios::showpos). To stop showing the plus sign, you say cout.unsetf(ios::showpos).

The last two flags deserve some explanation. You turn on unit buffering when you want to make sure each character is output as soon as it is inserted into an output stream. You could also use unbuffered output, but unit buffering provides better performance.

The ios::stdio flag is used when you have a program that uses both iostreams and the C standard I/O library (not unlikely if you’re using C libraries). If you discover your iostream output and printf() output are occurring in the wrong order, try setting this flag.

Format fields

The second type of formatting flags work in a group. You can have only one of these flags on at a time, like the buttons on old car radios – you push one in, the rest pop out. Unfortunately this doesn’t happen automatically, and you have to pay attention to what flags you’re setting so you don’t accidentally call the wrong setf() function. For example, there’s a flag for each of the number bases: hexadecimal, decimal, and octal. Collectively, these flags are referred to as the ios::basefield. If the ios::dec flag is set and you call setf(ios::hex), you’ll set the ios::hex flag, but you won’t clear the ios::dec bit, resulting in undefined behavior. The proper thing to do is call the second form of setf() like this: setf(ios::hex, ios::basefield). This function first clears all the bits in the ios::basefield, then sets ios::hex. Thus, this form of setf() ensures that the other flags in the group “pop out” whenever you set one. Of course, the hex() manipulator does all this for you, automatically, so you don’t have to concern yourself with the internal details of the implementation of this class or to even care that it’s a set of binary flags. Later you’ll see there are manipulators to provide equivalent functionality in all the places you would use setf().

Here are the flag groups and their effects:

	ios::basefield
	effect

	ios::dec
	Format integral values in base 10 (decimal) (default radix).

	ios::hex
	Format integral values in base 16 (hexadecimal).

	ios::oct
	Format integral values in base 8 (octal).

	ios::floatfield
	effect

	ios::scientific
	Display floating-point numbers in scientific format. Precision field indicates number of digits after the decimal point.

	ios::fixed
	Display floating-point numbers in fixed format. Precision field indicates number of digits after the decimal point.

	“automatic” (Neither bit is set.)
	Precision field indicates the total number of significant digits.

	ios::adjustfield
	effect

	ios::left
	Left-align values; pad on the right with the fill character.

	ios::right
	Right-align values. Pad on the left with the fill character. This is the default alignment.

	ios::internal
	Add fill characters after any leading sign or base indicator, but before the value.

Width, fill and precision

The internal variables that control the width of the output field, the fill character used when the data doesn’t fill the output field, and the precision for printing floating-point numbers are read and written by member functions of the same name.

	function
	effect

	int ios::width()
	Reads the current width. (Default is 0.) Used for both insertion and extraction.

	int ios::width(int n)
	Sets the width, returns the previous width.

	int ios::fill()
	Reads the current fill character. (Default is space.)

	int ios::fill(int n)
	Sets the fill character, returns the previous fill character.

	int ios::precision()
	Reads current floating-point precision. (Default is 6.)

	int ios::precision(int n)
	Sets floating-point precision, returns previous precision. See ios::floatfield table for the meaning of “precision.”

The fill and precision values are fairly straightforward, but width requires some explanation. When the width is zero, inserting a value will produce the minimum number of characters necessary to represent that value. A positive width means that inserting a value will produce at least as many characters as the width; if the value has less than width characters, the fill character is used to pad the field. However, the value will never be truncated, so if you try to print 123 with a width of two, you’ll still get 123. The field width specifies a minimum number of characters; there’s no way to specify a maximum number.

The width is also distinctly different because it’s reset to zero by each inserter or extractor that could be influenced by its value. It’s really not a state variable, but an implicit argument to the inserters and extractors. If you want to have a constant width, you have to call width() after each insertion or extraction.

An exhaustive example

To make sure you know how to call all the functions previously discussed, here’s an example that calls them all:

//: C02:Format.cpp
// Formatting functions
#include <fstream>

using namespace std;

#define D(A) T << #A << endl; A

ofstream T("format.out");

int main() {

 D(int i = 47;)

 D(float f = 2300114.414159;)

 char* s = "Is there any more?";

 D(T.setf(ios::unitbuf);)

// D(T.setf(ios::stdio);) // SOMETHING MAY HAVE CHANGED
 D(T.setf(ios::showbase);)

 D(T.setf(ios::uppercase);)

 D(T.setf(ios::showpos);)

 D(T << i << endl;) // Default to dec
 D(T.setf(ios::hex, ios::basefield);)

 D(T << i << endl;)

 D(T.unsetf(ios::uppercase);)

 D(T.setf(ios::oct, ios::basefield);)

 D(T << i << endl;)

 D(T.unsetf(ios::showbase);)

 D(T.setf(ios::dec, ios::basefield);)

 D(T.setf(ios::left, ios::adjustfield);)

 D(T.fill('0');)

 D(T << "fill char: " << T.fill() << endl;)

 D(T.width(10);)

 T << i << endl;

 D(T.setf(ios::right, ios::adjustfield);)

 D(T.width(10);)

 T << i << endl;

 D(T.setf(ios::internal, ios::adjustfield);)

 D(T.width(10);)

 T << i << endl;

 D(T << i << endl;) // Without width(10)
 D(T.unsetf(ios::showpos);)

 D(T.setf(ios::showpoint);)

 D(T << "prec = " << T.precision() << endl;)

 D(T.setf(ios::scientific, ios::floatfield);)

 D(T << endl << f << endl;)

 D(T.setf(ios::fixed, ios::floatfield);)

 D(T << f << endl;)

 D(T.setf(0, ios::floatfield);) // Automatic
 D(T << f << endl;)

 D(T.precision(20);)

 D(T << "prec = " << T.precision() << endl;)

 D(T << endl << f << endl;)

 D(T.setf(ios::scientific, ios::floatfield);)

 D(T << endl << f << endl;)

 D(T.setf(ios::fixed, ios::floatfield);)

 D(T << f << endl;)

 D(T.setf(0, ios::floatfield);) // Automatic
 D(T << f << endl;)

 D(T.width(10);)

 T << s << endl;

 D(T.width(40);)

 T << s << endl;

 D(T.setf(ios::left, ios::adjustfield);)

 D(T.width(40);)

 T << s << endl;

 D(T.unsetf(ios::showpoint);)

 D(T.unsetf(ios::unitbuf);)

// D(T.unsetf(ios::stdio);) // SOMETHING MAY HAVE CHANGED
} ///:~
This example uses a trick to create a trace file so you can monitor what’s happening. The macro D(a) uses the preprocessor “stringizing” to turn a into a string to print out. Then it reiterates a so the statement takes effect. The macro sends all the information out to a file called T, which is the trace file. The output is

int i = 47;

float f = 2300114.414159;

T.setf(ios::unitbuf);

T.setf(ios::stdio);

T.setf(ios::showbase);

T.setf(ios::uppercase);

T.setf(ios::showpos);

T << i << endl;

+47

T.setf(ios::hex, ios::basefield);

T << i << endl;

+0X2F

T.unsetf(ios::uppercase);

T.setf(ios::oct, ios::basefield);

T << i << endl;

+057

T.unsetf(ios::showbase);

T.setf(ios::dec, ios::basefield);

T.setf(ios::left, ios::adjustfield);

T.fill('0');

T << "fill char: " << T.fill() << endl;

fill char: 0

T.width(10);

+470000000

T.setf(ios::right, ios::adjustfield);

T.width(10);

0000000+47

T.setf(ios::internal, ios::adjustfield);

T.width(10);

+000000047

T << i << endl;

+47

T.unsetf(ios::showpos);

T.setf(ios::showpoint);

T << "prec = " << T.precision() << endl;

prec = 6

T.setf(ios::scientific, ios::floatfield);

T << endl << f << endl;

2.300115e+06

T.setf(ios::fixed, ios::floatfield);

T << f << endl;

2300114.500000

T.setf(0, ios::floatfield);

T << f << endl;

2.300115e+06

T.precision(20);

T << "prec = " << T.precision() << endl;

prec = 20

T << endl << f << endl;

2300114.50000000020000000000

T.setf(ios::scientific, ios::floatfield);

T << endl << f << endl;

2.30011450000000020000e+06

T.setf(ios::fixed, ios::floatfield);

T << f << endl;

2300114.50000000020000000000

T.setf(0, ios::floatfield);

T << f << endl;

2300114.50000000020000000000

T.width(10);

Is there any more?

T.width(40);

0000000000000000000000Is there any more?

T.setf(ios::left, ios::adjustfield);

T.width(40);

Is there any more?0000000000000000000000

T.unsetf(ios::showpoint);

T.unsetf(ios::unitbuf);

T.unsetf(ios::stdio);

Studying this output should clarify your understanding of the iostream formatting member functions.

Formatting manipulators

As you can see from the previous example, calling the member functions can get a bit tedious. To make things easier to read and write, a set of manipulators is supplied to duplicate the actions provided by the member functions.

Manipulators with no arguments are provided in <iostream>. These include dec, oct, and hex , which perform the same action as, respectively, setf(ios::dec, ios::basefield), setf(ios::oct, ios::basefield), and setf(ios::hex, ios::basefield), albeit more succinctly. <iostream>[9] also includes ws, endl, ends, and flush and the additional set shown here:

	manipulator
	effect

	showbase
noshowbase
	Indicate the numeric base (dec, oct, or hex) when printing an integral value. The format used can be read by the C++ compiler.

	showpos
noshowpos
	Show plus sign (+) for positive values

	uppercase
nouppercase
	Display uppercase A-F for hexadecimal values, and E for scientific values

	showpoint
noshowpoint
	Show decimal point and trailing zeros for floating-point values.

	skipws
noskipws
	Skip white space on input.

	left
right
internal
	Left-align, pad on right.
Right-align, pad on left.
Fill between leading sign or base indicator and value.

	scientific
fixed
	Use scientific notation
setprecision() or ios::precision() sets number of places after the decimal point.

Manipulators with arguments

If you are using manipulators with arguments, you must also include the header file <iomanip>. This contains code to solve the general problem of creating manipulators with arguments. In addition, it has six predefined manipulators:

	manipulator
	effect

	setiosflags (fmtflags n)
	Sets only the format flags specified by n. Setting remains in effect until the next change, like ios::setf().

	resetiosflags(fmtflags n)
	Clears only the format flags specified by n. Setting remains in effect until the next change, like ios::unsetf().

	setbase(base n)
	Changes base to n, where n is 10, 8, or 16. (Anything else results in 0.) If n is zero, output is base 10, but input uses the C conventions: 10 is 10, 010 is 8, and 0xf is 15. You might as well use dec, oct, and hex for output.

	setfill(char n)
	Changes the fill character to n, like ios::fill().

	setprecision(int n)
	Changes the precision to n, like ios::precision().

	setw(int n)
	Changes the field width to n, like ios::width().

If you’re using a lot of inserters, you can see how this can clean things up. As an example, here’s the previous program rewritten to use the manipulators. (The macro has been removed to make it easier to read.)

//: C02:Manips.cpp
// Format.cpp using manipulators
#include <fstream>

#include <iomanip>

using namespace std;

int main() {

 ofstream trc("trace.out");

 int i = 47;

 float f = 2300114.414159;

 char* s = "Is there any more?";

 trc << setiosflags(

 ios::unitbuf /*| ios::stdio */ /// ?????
 | ios::showbase | ios::uppercase

 | ios::showpos);

 trc << i << endl; // Default to dec
 trc << hex << i << endl;

 trc << resetiosflags(ios::uppercase)

 << oct << i << endl;

 trc.setf(ios::left, ios::adjustfield);

 trc << resetiosflags(ios::showbase)

 << dec << setfill('0');

 trc << "fill char: " << trc.fill() << endl;

 trc << setw(10) << i << endl;

 trc.setf(ios::right, ios::adjustfield);

 trc << setw(10) << i << endl;

 trc.setf(ios::internal, ios::adjustfield);

 trc << setw(10) << i << endl;

 trc << i << endl; // Without setw(10)
 trc << resetiosflags(ios::showpos)

 << setiosflags(ios::showpoint)

 << "prec = " << trc.precision() << endl;

 trc.setf(ios::scientific, ios::floatfield);

 trc << f << endl;

 trc.setf(ios::fixed, ios::floatfield);

 trc << f << endl;

 trc.setf(0, ios::floatfield); // Automatic
 trc << f << endl;

 trc << setprecision(20);

 trc << "prec = " << trc.precision() << endl;

 trc << f << endl;

 trc.setf(ios::scientific, ios::floatfield);

 trc << f << endl;

 trc.setf(ios::fixed, ios::floatfield);

 trc << f << endl;

 trc.setf(0, ios::floatfield); // Automatic
 trc << f << endl;

 trc << setw(10) << s << endl;

 trc << setw(40) << s << endl;

 trc.setf(ios::left, ios::adjustfield);

 trc << setw(40) << s << endl;

 trc << resetiosflags(

 ios::showpoint | ios::unitbuf

 // | ios::stdio // ?????????
);

} ///:~
You can see that a lot of the multiple statements have been condensed into a single chained insertion. Note the calls to setiosflags() and resetiosflags(), where the flags have been bitwise-ORed together. This could also have been done with setf() and unsetf() in the previous example.

Creating manipulators

(Note: This section contains some material that will not be introduced until later chapters.) Sometimes you’d like to create your own manipulators, and it turns out to be remarkably simple. A zero-argument manipulator like endl is simply a function that takes as its argument an ostream reference (references are a different way to pass arguments, discussed in Chapter XX). The declaration for endl is

ostream& endl(ostream&);

Now, when you say:

cout << “howdy” << endl;

the endl produces the address of that function. So the compiler says “is there a function I can call that takes the address of a function as its argument?” There is a pre-defined function in Iostream.h to do this; it’s called an applicator. The applicator calls the function, passing it the ostream object as an argument.

You don’t need to know how the applicator works to create your own manipulator; you only need to know the applicator exists. Here’s an example that creates a manipulator called nl that emits a newline without flushing the stream:

//: C02:nl.cpp
// Creating a manipulator
#include <iostream>

using namespace std;

ostream& nl(ostream& os) {

 return os << '\n';

}

int main() {

 cout << "newlines" << nl << "between" << nl

 << "each" << nl << "word" << nl;

} ///:~
The expression

os << '\n';

calls a function that returns os, which is what is returned from nl.[10]
People often argue that the nl approach shown above is preferable to using endl because the latter always flushes the output stream, which may incur a performance penalty.

Effectors

As you’ve seen, zero-argument manipulators are quite easy to create. But what if you want to create a manipulator that takes arguments? The iostream library has a rather convoluted and confusing way to do this, but Jerry Schwarz, the creator of the iostream library, suggests[11] a scheme he calls effectors. An effector is a simple class whose constructor performs the desired operation, along with an overloaded operator<< that works with the class. Here’s an example with two effectors. The first outputs a truncated character string, and the second prints a number in binary (the process of defining an overloaded operator<< will not be discussed until Chapter XX):

//: C02:Effector.txt

// (Should be "cpp" but I can't get it to compile with

// My windows compilers, so making it a txt file will

// keep it out of the makefile for the time being)

// Jerry Schwarz's "effectors"

#include<iostream>

#include <cstdlib>

#include <string>

#include <climits> // ULONG_MAX

using namespace std;

// Put out a portion of a string:

class Fixw {

 string str;

public:

 Fixw(const string& s, int width)

 : str(s, 0, width) {}

 friend ostream&

 operator<<(ostream& os, Fixw& fw) {

 return os << fw.str;

 }

};

typedef unsigned long ulong;

// Print a number in binary:

class Bin {

 ulong n;

public:

 Bin(ulong nn) { n = nn; }

 friend ostream& operator<<(ostream&, Bin&);

};

ostream& operator<<(ostream& os, Bin& b) {

 ulong bit = ~(ULONG_MAX >> 1); // Top bit set

 while(bit) {

 os << (b.n & bit ? '1' : '0');

 bit >>= 1;

 }

 return os;

}

int main() {

 char* string =

 "Things that make us happy, make us wise";

 for(int i = 1; i <= strlen(string); i++)

 cout << Fixw(string, i) << endl;

 ulong x = 0xCAFEBABEUL;

 ulong y = 0x76543210UL;

 cout << "x in binary: " << Bin(x) << endl;

 cout << "y in binary: " << Bin(y) << endl;

} ///:~

The constructor for Fixw creates a shortened copy of its char* argument, and the destructor releases the memory created for this copy. The overloaded operator<< takes the contents of its second argument, the Fixw object, and inserts it into the first argument, the ostream, then returns the ostream so it can be used in a chained expression. When you use Fixw in an expression like this:

cout << Fixw(string, i) << endl;

a temporary object is created by the call to the Fixw constructor, and that temporary is passed to operator<<. The effect is that of a manipulator with arguments.

The Bin effector relies on the fact that shifting an unsigned number to the right shifts zeros into the high bits. ULONG_MAX (the largest unsigned long value, from the standard include file <climits>) is used to produce a value with the high bit set, and this value is moved across the number in question (by shifting it), masking each bit.

Initially the problem with this technique was that once you created a class called Fixw for char* or Bin for unsigned long, no one else could create a different Fixw or Bin class for their type. However, with namespaces (covered in Chapter XX), this problem is eliminated.

Iostream examples

In this section you’ll see some examples of what you can do with all the information you’ve learned in this chapter. Although many tools exist to manipulate bytes (stream editors like sed and awk from Unix are perhaps the most well known, but a text editor also fits this category), they generally have some limitations. sed and awk can be slow and can only handle lines in a forward sequence, and text editors usually require human interaction, or at least learning a proprietary macro language. The programs you write with iostreams have none of these limitations: They’re fast, portable, and flexible. It’s a very useful tool to have in your kit.

Code generation

The first examples concern the generation of programs that, coincidentally, fit the format used in this book. This provides a little extra speed and consistency when developing code. The first program creates a file to hold main() (assuming it takes no command-line arguments and uses the iostream library):

//: C02:Makemain.cpp
// Create a shell main() file
#include "../require.h"
#include <fstream>

#include <strstream>

#include <cstring>

#include <cctype>

using namespace std;

int main(int argc, char* argv[]) {

 requireArgs(argc, 1);

 ofstream mainfile(argv[1]);

 assure(mainfile, argv[1]);

 istrstream name(argv[1]);

 ostrstream CAPname;

 char c;

 while(name.get(c))

 CAPname << char(toupper(c));

 CAPname << ends;

 mainfile << "//" << ": " << CAPname.rdbuf()

 << " -- " << endl

 << "#include <iostream>" << endl

 << endl

 << "main() {" << endl << endl

 << "}" << endl;

} ///:~
The argument on the command line is used to create an istrstream, so the characters can be extracted one at a time and converted to upper case with the Standard C library macro toupper(). This returns an int so it must be explicitly cast to a char. This name is used in the headline, followed by the remainder of the generated file.

Maintaining class library source

The second example performs a more complex and useful task. Generally, when you create a class you think in library terms, and make a header file Name.h for the class declaration and a file where the member functions are implemented, called Name.cpp. These files have certain requirements: a particular coding standard (the program shown here will use the coding format for this book), and in the header file the declarations are generally surrounded by some preprocessor statements to prevent multiple declarations of classes. (Multiple declarations confuse the compiler – it doesn’t know which one you want to use. They could be different, so it throws up its hands and gives an error message.)

This example allows you to create a new header-implementation pair of files, or to modify an existing pair. If the files already exist, it checks and potentially modifies the files, but if they don’t exist, it creates them using the proper format.

[[This should be changed to use string instead of <cstring>]]

//: C02:Cppcheck.cpp
// Configures .h & .cpp files
// To conform to style standard.
// Tests existing files for conformance
#include "../require.h"
#include <fstream>

#include <strstream>

#include <cstring>

#include <cctype>

using namespace std;

int main(int argc, char* argv[]) {

 const int sz = 40; // Buffer sizes
 const int bsz = 100;

 requireArgs(argc, 1); // File set name
 enum bufs { base, header, implement,

 Hline1, guard1, guard2, guard3,

 CPPline1, include, bufnum };

 char b[bufnum][sz];

 ostrstream osarray[] = {

 ostrstream(b[base], sz),

 ostrstream(b[header], sz),

 ostrstream(b[implement], sz),

 ostrstream(b[Hline1], sz),

 ostrstream(b[guard1], sz),

 ostrstream(b[guard2], sz),

 ostrstream(b[guard3], sz),

 ostrstream(b[CPPline1], sz),

 ostrstream(b[include], sz),

 };

 osarray[base] << argv[1] << ends;

 // Find any '.' in the string using the
 // Standard C library function strchr():
 char* period = strchr(b[base], '.');

 if(period) *period = 0; // Strip extension
 // Force to upper case:
 for(int i = 0; b[base][i]; i++)

 b[base][i] = toupper(b[base][i]);

 // Create file names and internal lines:
 osarray[header] << b[base] << ".h" << ends;

 osarray[implement] << b[base] << ".cpp" << ends;

 osarray[Hline1] << "//" << ": " << b[header]

 << " -- " << ends;

 osarray[guard1] << "#ifndef " << b[base]

 << "_H" << ends;

 osarray[guard2] << "#define " << b[base]

 << "_H" << ends;

 osarray[guard3] << "#endif // " << b[base]

 << "_H" << ends;

 osarray[CPPline1] << "//" << ": "
 << b[implement]

 << " -- " << ends;

 osarray[include] << "#include \""

 << b[header] << "\"" <<ends;

 // First, try to open existing files:
 ifstream existh(b[header]),

 existcpp(b[implement]);

 if(!existh) { // Doesn't exist; create it
 ofstream newheader(b[header]);

 assure(newheader, b[header]);

 newheader << b[Hline1] << endl

 << b[guard1] << endl

 << b[guard2] << endl << endl

 << b[guard3] << endl;

 }

 if(!existcpp) { // Create cpp file
 ofstream newcpp(b[implement]);

 assure(newcpp, b[implement]);

 newcpp << b[CPPline1] << endl

 << b[include] << endl;

 }

 if(existh) { // Already exists; verify it
 strstream hfile; // Write & read
 ostrstream newheader; // Write
 hfile << existh.rdbuf() << ends;

 // Check that first line conforms:
 char buf[bsz];

 if(hfile.getline(buf, bsz)) {

 if(!strstr(buf, "//" ":") ||

 !strstr(buf, b[header]))

 newheader << b[Hline1] << endl;

 }

 // Ensure guard lines are in header:
 if(!strstr(hfile.str(), b[guard1]) ||

 !strstr(hfile.str(), b[guard2]) ||

 !strstr(hfile.str(), b[guard3])) {

 newheader << b[guard1] << endl

 << b[guard2] << endl

 << buf

 << hfile.rdbuf() << endl

 << b[guard3] << endl << ends;

 } else
 newheader << buf

 << hfile.rdbuf() << ends;

 // If there were changes, overwrite file:
 if(strcmp(hfile.str(),newheader.str())!=0){

 existh.close();

 ofstream newH(b[header]);

 assure(newH, b[header]);

 newH << "//@//" << endl // Change marker
 << newheader.rdbuf();

 }

 delete hfile.str();

 delete newheader.str();

 }

 if(existcpp) { // Already exists; verify it
 strstream cppfile;

 ostrstream newcpp;

 cppfile << existcpp.rdbuf() << ends;

 char buf[bsz];

 // Check that first line conforms:
 if(cppfile.getline(buf, bsz))

 if(!strstr(buf, "//" ":") ||

 !strstr(buf, b[implement]))

 newcpp << b[CPPline1] << endl;

 // Ensure header is included:
 if(!strstr(cppfile.str(), b[include]))

 newcpp << b[include] << endl;

 // Put in the rest of the file:
 newcpp << buf << endl; // First line read
 newcpp << cppfile.rdbuf() << ends;

 // If there were changes, overwrite file:
 if(strcmp(cppfile.str(),newcpp.str())!=0){

 existcpp.close();

 ofstream newCPP(b[implement]);

 assure(newCPP, b[implement]);

 newCPP << "//@//" << endl // Change marker
 << newcpp.rdbuf();

 }

 delete cppfile.str();

 delete newcpp.str();

 }

} ///:~
This example requires a lot of string formatting in many different buffers. Rather than creating a lot of individually named buffers and ostrstream objects, a single set of names is created in the enum bufs. Then two arrays are created: an array of character buffers and an array of ostrstream objects built from those character buffers. Note that in the definition for the two-dimensional array of char buffers b, the number of char arrays is determined by bufnum, the last enumerator in bufs. When you create an enumeration, the compiler assigns integral values to all the enum labels starting at zero, so the sole purpose of bufnum is to be a counter for the number of enumerators in buf. The length of each string in b is sz.

The names in the enumeration are base, the capitalized base file name without extension; header, the header file name; implement, the implementation file (cpp) name; Hline1, the skeleton first line of the header file; guard1, guard2, and guard3, the “guard” lines in the header file (to prevent multiple inclusion); CPPline1, the skeleton first line of the cpp file; and include, the line in the cpp file that includes the header file.

osarray is an array of ostrstream objects created using aggregate initialization and automatic counting. Of course, this is the form of the ostrstream constructor that takes two arguments (the buffer address and buffer size), so the constructor calls must be formed accordingly inside the aggregate initializer list. Using the bufs enumerators, the appropriate array element of b is tied to the corresponding osarray object. Once the array is created, the objects in the array can be selected using the enumerators, and the effect is to fill the corresponding b element. You can see how each string is built in the lines following the ostrstream array definition.

Once the strings have been created, the program attempts to open existing versions of both the header and cpp file as ifstreams. If you test the object using the operator ‘!’ and the file doesn’t exist, the test will fail. If the header or implementation file doesn’t exist, it is created using the appropriate lines of text built earlier.

If the files do exist, then they are verified to ensure the proper format is followed. In both cases, a strstream is created and the whole file is read in; then the first line is read and checked to make sure it follows the format by seeing if it contains both a “//:” and the name of the file. This is accomplished with the Standard C library function strstr(). If the first line doesn’t conform, the one created earlier is inserted into an ostrstream that has been created to hold the edited file.

In the header file, the whole file is searched (again using strstr()) to ensure it contains the three “guard” lines; if not, they are inserted. The implementation file is checked for the existence of the line that includes the header file (although the compiler effectively guarantees its existence).

In both cases, the original file (in its strstream) and the edited file (in the ostrstream) are compared to see if there are any changes. If there are, the existing file is closed, and a new ofstream object is created to overwrite it. The ostrstream is output to the file after a special change marker is added at the beginning, so you can use a text search program to rapidly find any files that need reviewing to make additional changes.

Detecting compiler errors

All the code in this book is designed to compile as shown without errors. Any line of code that should generate a compile-time error is commented out with the special comment sequence “//!”. The following program will remove these special comments and append a numbered comment to the line, so that when you run your compiler it should generate error messages and you should see all the numbers appear when you compile all the files. It also appends the modified line to a special file so you can easily locate any lines that don’t generate errors:

//: C02:Showerr.cpp
// Un-comment error generators
#include "../require.h"
#include <iostream>

#include <fstream>

#include <strstream>

#include <cctype>

#include <cstring>

using namespace std;

char* marker = "//!";

char* usage =

"usage: showerr filename chapnum\n"
"where filename is a C++ source file\n"
"and chapnum is the chapter name it's in.\n"
"Finds lines commented with //! and removes\n"
"comment, appending //(#) where # is unique\n"
"across all files, so you can determine\n"
"if your compiler finds the error.\n"
"showerr /r\n"
"resets the unique counter.";

// File containing error number counter:
char* errnum = "../errnum.txt";

// File containing error lines:
char* errfile = "../errlines.txt";

ofstream errlines(errfile,ios::app);

int main(int argc, char* argv[]) {

 requireArgs(argc, 2, usage);

 if(argv[1][0] == '/' || argv[1][0] == '-') {

 // Allow for other switches:
 switch(argv[1][1]) {

 case 'r': case 'R':

 cout << "reset counter" << endl;

 remove(errnum); // Delete files
 remove(errfile);

 return 0;

 default:

 cerr << usage << endl;

 return 1;

 }

 }

 char* chapter = argv[2];

 strstream edited; // Edited file
 int counter = 0;

 {

 ifstream infile(argv[1]);

 assure(infile, argv[1]);

 ifstream count(errnum);

 assure(count, errnum);

 if(count) count >> counter;

 int linecount = 0;

 const int sz = 255;

 char buf[sz];

 while(infile.getline(buf, sz)) {

 linecount++;

 // Eat white space:
 int i = 0;

 while(isspace(buf[i]))

 i++;

 // Find marker at start of line:
 if(strstr(&buf[i], marker) == &buf[i]) {

 // Erase marker:
 memset(&buf[i], ' ', strlen(marker));

 // Append counter & error info:
 ostrstream out(buf, sz, ios::ate);

 out << "//(" << ++counter << ") "
 << "Chapter " << chapter

 << " File: " << argv[1]

 << " Line " << linecount << endl

 << ends;

 edited << buf;

 errlines << buf; // Append error file
 } else
 edited << buf << "\n"; // Just copy
 }

 } // Closes files
 ofstream outfile(argv[1]); // Overwrites
 assure(outfile, argv[1]);

 outfile << edited.rdbuf();

 ofstream count(errnum); // Overwrites
 assure(count, errnum);

 count << counter; // Save new counter
} ///:~
The marker can be replaced with one of your choice.

Each file is read a line at a time, and each line is searched for the marker appearing at the head of the line; the line is modified and put into the error line list and into the strstream edited. When the whole file is processed, it is closed (by reaching the end of a scope), reopened as an output file and edited is poured into the file. Also notice the counter is saved in an external file, so the next time this program is invoked it continues to sequence the counter.

A simple datalogger

This example shows an approach you might take to log data to disk and later retrieve it for processing. The example is meant to produce a temperature-depth profile of the ocean at various points. To hold the data, a class is used:

//: C02:DataLogger.h
// Datalogger record layout
#ifndef DATALOG_H

#define DATALOG_H

#include <ctime>

#include <iostream>

class DataPoint {

 std::tm time; // Time & day
 static const int bsz = 10;

 // Ascii degrees (*) minutes (') seconds ("):
 char latitude[bsz], longitude[bsz];

 double depth, temperature;

public:

 std::tm getTime();

 void setTime(std::tm t);

 const char* getLatitude();

 void setLatitude(const char* l);

 const char* getLongitude();

 void setLongitude(const char* l);

 double getDepth();

 void setDepth(double d);

 double getTemperature();

 void setTemperature(double t);

 void print(std::ostream& os);

};

#endif // DATALOG_H ///:~
The access functions provide controlled reading and writing to each of the data members. The print() function formats the DataPoint in a readable form onto an ostream object (the argument to print()). Here’s the definition file:

//: C02:Datalog.cpp {O}
// Datapoint member functions
#include "DataLogger.h"
#include <iomanip>

#include <cstring>

using namespace std;

tm DataPoint::getTime() { return time; }

void DataPoint::setTime(tm t) { time = t; }

const char* DataPoint::getLatitude() {

 return latitude;

}

void DataPoint::setLatitude(const char* l) {

 latitude[bsz - 1] = 0;

 strncpy(latitude, l, bsz - 1);

}

const char* DataPoint::getLongitude() {

 return longitude;

}

void DataPoint::setLongitude(const char* l) {

 longitude[bsz - 1] = 0;

 strncpy(longitude, l, bsz - 1);

}

double DataPoint::getDepth() { return depth; }

void DataPoint::setDepth(double d) { depth = d; }

double DataPoint::getTemperature() {

 return temperature;

}

void DataPoint::setTemperature(double t) {

 temperature = t;

}

void DataPoint::print(ostream& os) {

 os.setf(ios::fixed, ios::floatfield);

 os.precision(4);

 os.fill('0'); // Pad on left with '0'
 os << setw(2) << getTime().tm_mon << '\\'

 << setw(2) << getTime().tm_mday << '\\'

 << setw(2) << getTime().tm_year << ' '

 << setw(2) << getTime().tm_hour << ':'

 << setw(2) << getTime().tm_min << ':'

 << setw(2) << getTime().tm_sec;

 os.fill(' '); // Pad on left with ' '
 os << " Lat:" << setw(9) << getLatitude()

 << ", Long:" << setw(9) << getLongitude()

 << ", depth:" << setw(9) << getDepth()

 << ", temp:" << setw(9) << getTemperature()

 << endl;

} ///:~
In print(), the call to setf() causes the floating-point output to be fixed-precision, and precision() sets the number of decimal places to four.

The default is to right-justify the data within the field. The time information consists of two digits each for the hours, minutes and seconds, so the width is set to two with setw() in each case. (Remember that any changes to the field width affect only the next output operation, so setw() must be given for each output.) But first, to put a zero in the left position if the value is less than 10, the fill character is set to ‘0’. Afterwards, it is set back to a space.

The latitude and longitude are zero-terminated character fields, which hold the information as degrees (here, ‘*’ denotes degrees), minutes (‘), and seconds(“). You can certainly devise a more efficient storage layout for latitude and longitude if you desire.

Generating test data

Here’s a program that creates a file of test data in binary form (using write()) and a second file in ASCII form using DataPoint::print(). You can also print it out to the screen but it’s easier to inspect in file form.

//: C02:Datagen.cpp
//{L} Datalog
// Test data generator
#include "DataLogger.h"
#include "../require.h"
#include <fstream>

#include <cstdlib>

#include <cstring>

using namespace std;

int main() {

 ofstream data("data.txt");

 assure(data, "data.txt");

 ofstream bindata("data.bin", ios::binary);

 assure(bindata, "data.bin");

 time_t timer;

 // Seed random number generator:
 srand(time(&timer));

 for(int i = 0; i < 100; i++) {

 DataPoint d;

 // Convert date/time to a structure:
 d.setTime(*localtime(&timer));

 timer += 55; // Reading each 55 seconds
 d.setLatitude("45*20'31\"");

 d.setLongitude("22*34'18\"");

 // Zero to 199 meters:
 double newdepth = rand() % 200;

 double fraction = rand() % 100 + 1;

 newdepth += double(1) / fraction;

 d.setDepth(newdepth);

 double newtemp = 150 + rand()%200; // Kelvin
 fraction = rand() % 100 + 1;

 newtemp += (double)1 / fraction;

 d.setTemperature(newtemp);

 d.print(data);

 bindata.write((unsigned char*)&d,

 sizeof(d));

 }

} ///:~
The file DATA.TXT is created in the ordinary way as an ASCII file, but DATA.BIN has the flag ios::binary to tell the constructor to set it up as a binary file.

The Standard C library function time(), when called with a zero argument, returns the current time as a time_t value, which is the number of seconds elapsed since 00:00:00 GMT, January 1 1970 (the dawning of the age of Aquarius?). The current time is the most convenient way to seed the random number generator with the Standard C library function srand(), as is done here.

Sometimes a more convenient way to store the time is as a tm structure, which has all the elements of the time and date broken up into their constituent parts as follows:

struct tm {

 int tm_sec; // 0-59 seconds
 int tm_min; // 0-59 minutes
 int tm_hour; // 0-23 hours
 int tm_mday; // Day of month
 int tm_mon; // 0-11 months
 int tm_year; // Calendar year
 int tm_wday; // Sunday == 0, etc.
 int tm_yday; // 0-365 day of year
 int tm_isdst; // Daylight savings?
};

To convert from the time in seconds to the local time in the tm format, you use the Standard C library localtime() function, which takes the number of seconds and returns a pointer to the resulting tm. This tm, however, is a static structure inside the localtime() function, which is rewritten every time localtime() is called. To copy the contents into the tm struct inside DataPoint, you might think you must copy each element individually. However, all you must do is a structure assignment, and the compiler will take care of the rest. This means the right-hand side must be a structure, not a pointer, so the result of localtime() is dereferenced. The desired result is achieved with

d.setTime(*localtime(&timer));

After this, the timer is incremented by 55 seconds to give an interesting interval between readings.

The latitude and longitude used are fixed values to indicate a set of readings at a single location. Both the depth and the temperature are generated with the Standard C library rand() function, which returns a pseudorandom number between zero and the constant RAND_MAX. To put this in a desired range, use the modulus operator % and the upper end of the range. These numbers are integral; to add a fractional part, a second call to rand() is made, and the value is inverted after adding one (to prevent divide-by-zero errors).

In effect, the DATA.BIN file is being used as a container for the data in the program, even though the container exists on disk and not in RAM. To send the data out to the disk in binary form, write() is used. The first argument is the starting address of the source block – notice it must be cast to an unsigned char* because that’s what the function expects. The second argument is the number of bytes to write, which is the size of the DataPoint object. Because no pointers are contained in DataPoint, there is no problem in writing the object to disk. If the object is more sophisticated, you must implement a scheme for serialization . (Most vendor class libraries have some sort of serialization structure built into them.)

Verifying & viewing the data

To check the validity of the data stored in binary format, it is read from the disk and put in text form in DATA2.TXT, so that file can be compared to DATA.TXT for verification. In the following program, you can see how simple this data recovery is. After the test file is created, the records are read at the command of the user.

//: C02:Datascan.cpp
//{L} Datalog
// Verify and view logged data
#include "DataLogger.h"
#include "../require.h"
#include <iostream>

#include <fstream>

#include <strstream>

#include <iomanip>

using namespace std;

int main() {

 ifstream bindata("data.bin", ios::binary);

 assure(bindata, "data.bin");

 // Create comparison file to verify data.txt:
 ofstream verify("data2.txt");

 assure(verify, "data2.txt");

 DataPoint d;

 while(bindata.read(

 (unsigned char*)&d, sizeof d))

 d.print(verify);

 bindata.clear(); // Reset state to "good"
 // Display user-selected records:
 int recnum = 0;

 // Left-align everything:
 cout.setf(ios::left, ios::adjustfield);

 // Fixed precision of 4 decimal places:
 cout.setf(ios::fixed, ios::floatfield);

 cout.precision(4);

 for(;;) {

 bindata.seekg(recnum* sizeof d, ios::beg);

 cout << "record " << recnum << endl;

 if(bindata.read(

 (unsigned char*)&d, sizeof d)) {

 cout << asctime(&(d.getTime()));

 cout << setw(11) << "Latitude"
 << setw(11) << "Longitude"
 << setw(10) << "Depth"
 << setw(12) << "Temperature"
 << endl;

 // Put a line after the description:
 cout << setfill('-') << setw(43) << '-'

 << setfill(' ') << endl;

 cout << setw(11) << d.getLatitude()

 << setw(11) << d.getLongitude()

 << setw(10) << d.getDepth()

 << setw(12) << d.getTemperature()

 << endl;

 } else {

 cout << "invalid record number" << endl;

 bindata.clear(); // Reset state to "good"
 }

 cout << endl

 << "enter record number, x to quit:";

 char buf[10];

 cin.getline(buf, 10);

 if(buf[0] == 'x') break;

 istrstream input(buf, 10);

 input >> recnum;

 }

} ///:~
The ifstream bindata is created from DATA.BIN as a binary file, with the ios::nocreate flag on to cause the assert() to fail if the file doesn’t exist. The read() statement reads a single record and places it directly into the DataPoint d. (Again, if DataPoint contained pointers this would result in meaningless pointer values.) This read() action will set bindata’s failbit when the end of the file is reached, which will cause the while statement to fail. At this point, however, you can’t move the get pointer back and read more records because the state of the stream won’t allow further reads. So the clear() function is called to reset the failbit.

Once the record is read in from disk, you can do anything you want with it, such as perform calculations or make graphs. Here, it is displayed to further exercise your knowledge of iostream formatting.

The rest of the program displays a record number (represented by recnum) selected by the user. As before, the precision is fixed at four decimal places, but this time everything is left justified.

The formatting of this output looks different from before:

record 0

Tue Nov 16 18:15:49 1993

Latitude Longitude Depth Temperature

45*20'31" 22*34'18" 186.0172 269.0167

To make sure the labels and the data columns line up, the labels are put in the same width fields as the columns, using setw(). The line in between is generated by setting the fill character to ‘-’, the width to the desired line width, and outputting a single ‘-’.

If the read() fails, you’ll end up in the else part, which tells the user the record number was invalid. Then, because the failbit was set, it must be reset with a call to clear() so the next read() is successful (assuming it’s in the right range).

Of course, you can also open the binary data file for writing as well as reading. This way you can retrieve the records, modify them, and write them back to the same location, thus creating a flat-file database management system. In my very first programming job, I also had to create a flat-file DBMS – but using BASIC on an Apple II. It took months, while this took minutes. Of course, it might make more sense to use a packaged DBMS now, but with C++ and iostreams you can still do all the low-level operations that are necessary in a lab.

Counting editor

Often you have some editing task where you must go through and sequentially number something, but all the other text is duplicated. I encountered this problem when pasting digital photos into a Web page – I got the formatting just right, then duplicated it, then had the problem of incrementing the photo number for each one. So I replaced the photo number with XXX, duplicated that, and wrote the following program to find and replace the “XXX” with an incremented count. Notice the formatting, so the value will be “001,” “002,” etc.:

//: C02:NumberPhotos.cpp
// Find the marker "XXX" and replace it with an
// incrementing number whereever it appears. Used
// to help format a web page with photos in it
#include "../require.h"
#include <fstream>

#include <sstream>

#include <iomanip>

#include <string>

using namespace std;

int main(int argc, char* argv[]) {

 requireArgs(argc, 2);

 ifstream in(argv[1]);

 assure(in, argv[1]);

 ofstream out(argv[2]);

 assure(out, argv[2]);

 string line;

 int counter = 1;

 while(getline(in, line)) {

 int xxx = line.find("XXX");

 if(xxx != string::npos) {

 ostringstream cntr;

 cntr << setfill('0') << setw(3) << counter++;

 line.replace(xxx, 3, cntr.str());

 }

 out << line << endl;

 }

} ///:~
Breaking up big files

This program was created to break up big files into smaller ones, in particular so they could be more easily downloaded from an Internet server (since hangups sometimes occur, this allows someone to download a file a piece at a time and then re-assemble it at the client end). You’ll note that the program also creates a reassembly batch file for DOS (where it is messier), whereas under Linux/Unix you simply say something like “cat *piece* > destination.file”.

This program reads the entire file into memory, which of course relies on having a 32-bit operating system with virtual memory for big files. It then pieces it out in chunks to the smaller files, generating the names as it goes. Of course, you can come up with a possibly more reasonable strategy that reads a chunk, creates a file, reads another chunk, etc.

Note that this program can be run on the server, so you only have to download the big file once and then break it up once it’s on the server.

//: C02:Breakup.cpp
// Breaks a file up into smaller files for
// easier downloads
#include "../require.h"
#include <iostream>

#include <fstream>

#include <iomanip>

#include <strstream>

#include <string>

using namespace std;

int main(int argc, char* argv[]) {

 requireArgs(argc, 1);

 ifstream in(argv[1], ios::binary);

 assure(in, argv[1]);

 in.seekg(0, ios::end); // End of file
 long fileSize = in.tellg(); // Size of file
 cout << "file size = " << fileSize << endl;

 in.seekg(0, ios::beg); // Start of file
 char* fbuf = new char[fileSize];

 require(fbuf != 0);

 in.read(fbuf, fileSize);

 in.close();

 string infile(argv[1]);

 int dot = infile.find('.');

 while(dot != string::npos) {

 infile.replace(dot, 1, "-");

 dot = infile.find('.');

 }

 string batchName(

 "DOSAssemble" + infile + ".bat");

 ofstream batchFile(batchName.c_str());

 batchFile << "copy /b ";

 int filecount = 0;

 const int sbufsz = 128;

 char sbuf[sbufsz];

 const long pieceSize = 1000L * 100L;

 long byteCounter = 0;

 while(byteCounter < fileSize) {

 ostrstream name(sbuf, sbufsz);

 name << argv[1] << "-part" << setfill('0')

 << setw(2) << filecount++ << ends;

 cout << "creating " << sbuf << endl;

 if(filecount > 1)

 batchFile << "+";

 batchFile << sbuf;

 ofstream out(sbuf, ios::out | ios::binary);

 assure(out, sbuf);

 long byteq;

 if(byteCounter + pieceSize < fileSize)

 byteq = pieceSize;

 else
 byteq = fileSize - byteCounter;

 out.write(fbuf + byteCounter, byteq);

 cout << "wrote " << byteq << " bytes, ";

 byteCounter += byteq;

 out.close();

 cout << "ByteCounter = " << byteCounter

 << ", fileSize = " << fileSize << endl;

 }

 batchFile << " " << argv[1] << endl;

} ///:~
Summary

This chapter has given you a fairly thorough introduction to the iostream class library. In all likelihood, it is all you need to create programs using iostreams. (In later chapters you’ll see simple examples of adding iostream functionality to your own classes.) However, you should be aware that there are some additional features in iostreams that are not used often, but which you can discover by looking at the iostream header files and by reading your compiler’s documentation on iostreams.

Exercises

1. Open a file by creating an ifstream object called in. Make an ostrstream object called os, and read the entire contents into the ostrstream using the rdbuf() member function. Get the address of os’s char* with the str() function, and capitalize every character in the file using the Standard C toupper() macro. Write the result out to a new file, and delete the memory allocated by os.

2. Create a program that opens a file (the first argument on the command line) and searches it for any one of a set of words (the remaining arguments on the command line). Read the input a line at a time, and print out the lines (with line numbers) that match.

3. Write a program that adds a copyright notice to the beginning of all source-code files. This is a small modification to exercise 1.

4. Use your favorite text-searching program (grep, for example) to output the names (only) of all the files that contain a particular pattern. Redirect the output into a file. Write a program that uses the contents of that file to generate a batch file that invokes your editor on each of the files found by the search program.

