Министерство образования и науки Российской Федерации Санкт-Петербургский государственный университет Математико-механический факультет

Принято на заседании кафедры	УТВЕРЖДАЮ
статистического моделирования	
протокол от 19.05.2009 № 5 Зав. кафедрой	Декан факультета
С.М.Ермаков	Г.А. Леонов

ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Численные методы Монте-Карло» специальность – 010501 «Прикладная математика и информатика»

- 1. **Цель изучения дисциплины:** Освоение студентами методов математического моделирования Развитие у студентов умения корректно ставить и решать прикладные задачи математическими методами.
- 2. Задачи курса: Изучение основных принципов численного моделирования. Освоение основных методов имитационного моделирования случайных величин и стохастических процессов. Использование методов Монте-Карло для вычисления интегралов, решения систем линейных уравнений и решения интегральных уравнений. Выработка умения работать со специалистами смежных и прикладных областей.
- **3. Место курса в профессиональной подготовке выпускника:** Дисциплина "Численные методы Монте-Карло" является базовой в подготовке специалистов к решению широкого круга прикладных задач.
- 4. Требования к уровню освоения дисциплины "Численные методы Монте-Карло"
 - знать содержание дисциплины "Численные методы Монте-Карло" и иметь достаточно полное представление о возможностях применения ее разделов в различных прикладных областях науки и техники;
 - уметь применять методы математического моделирования для решения широкого круга прикладных задач.

5. Объем дисциплины, виды учебной работы, форма текущего промежуточного и итогового контроля

Всего аудиторных занятий	66 часов
из них: - лекций	66 часов
- практические занятия	0 часов

Изучение дисциплины по семестрам:
6 семестр: лекции - 32ч.
7 семестр: лекции - 34ч., экзамен

6. Содержание дисциплины

6.1. Содержание разделов дисциплин и виды занятий

6-й семестр (32 часа)

І. Введение (2 ч. лекций)

Примеры математических задач, при решении которых используется метод Монте-Карло.

ІІ. Моделирование случайных величин и процессов (30 ч. лекций).

1. Способы моделирования случайных величин с заданным законом распределения. (8 ч. лекций).

Моделирование методом обратных функций. Моделирование порядковых статистик. Моделирование многомерных случайных величин. Моделирование п-мерной непрерывной случайной точки с произвольными координатами. Использование замены переменных. Использование полярных координат. Моделирование нормального распределения.

2. Метод суперпозиции. (4 ч. лекций).

Моделирование методом дискретной суперпозиции. Модифицированный метод суперпозиции. Метод интегральной суперпозиции. Метод суперпозиции для составных плотностей. Вычислительная эффективность различных методов.

3. **Метод отбора**. (4 ч. лекций).

Моделирование усеченных распределений. Метод Неймана. Метод исключения. Выбор равномерно распределенных точек в сложных областях. Эффективность методов.

4. Моделирование случайных векторов. (3 ч. лекций).

Моделирование вектора с независимыми компонентами. Моделирование нормального вектора с зависимыми компонентами. Моделирование изотропного вектора.

5. Моделирование гамма и бета-распределений. (3 ч. лекций).

Моделирование гамма – распределения с целым и полу -целым параметром и методом исключения при произвольных параметрах. Моделирование бета – распределения при целых параметрах и методом исключения при произвольных параметрах.

6. Специальные методы моделирования распределений. (3 ч. лекций).

Биномиальное распределение. Моделирование пуассоновского распределения методом обратных функций и через связь с показательным распределением. Геометрическое распределение. Отрицательно – биномиальное распределение. Табличный метод моделирования случайных величин. Приближенное моделирование нормального распределения.

7. Случайные процессы и их моделирование. (5 ч. лекций).

Определения случайных процессов. Свойства корреляционных функций. Оценка выборочных корреляций. Моделирование случайных процессов на основе канонического разложения. Примеры: процесс броуновского движения, марковский гауссовский стационарный процесс. Моделирование стационарного гауссовского процесса с конечным спектром. Моделирование рандомизированной модели. Условное распределение зависимых гауссовских векторов. Моделирование векторного марковского гауссовского процесса. Моделирование пуассоновского процесса. Моделирование стационарных гауссовских процессов скользящего суммирования и авторегрессии.

7-й семестр (34 часа)

III. Численные методы при решении задач методом Монте-Карло.

1. Введение (2 ч. лекций).

2. Численное интегрирование (14 ч. лекций).

Стандартный алгоритм, его погрешности и трудоемкость. Выделение главной части. Метод существенной выборки. Понижение порядка интегрирования. Расслоенная выборка. Симметризация подынтегральной функции. Использование зависимых переменных.

3. Цепи Маркова с произвольным пространством состояний. (16 ч. лекций).

Моделирование цепи Маркова. Решение систем линейных алгебраических уравнений. Решение интегральных уравнений методом Монте-Карло.

4. Простейшие задачи переноса излучений. (2 ч. лекций).

6.2 Лабораторный практикум

- не предусмотрен учебным планом

6.3. Перечень примерных контрольных вопросов и заданий для самостоятельной работы

- не предусмотрен учебным планом

6.4 Темы курсовых работ (выборочно)

- не предусмотрен учебным планом

6.5 Темы рефератов – для данной дисциплины не предусмотрены учебным планом.

6.6 Примерный перечень вопросов к экзамену по всему курсу

6-й семестр

- Моделирование случайных величин методом обратных функций.
- Моделирование порядковых статистик.
- Моделирование многомерных случайных величин.
- Моделирование п-мерной непрерывной случайной точки с произвольными координатами.
- Использование замены переменных. Использование полярных координат.
- Моделирование нормального распределения.
- Моделирование методом дискретной суперпозиции.
- Модифицированный метод суперпозиции.
- Метод интегральной суперпозиции.
- Метод суперпозиции для составных плотностей.
- Моделирование усеченных распределений.
- Метод Неймана.
- Метод исключения.
- Выбор равномерно распределенных точек в сложных областях.
- Моделирование нормального вектора с зависимыми компонентами.
- Моделирование изотропного вектора.
- Моделирование гамма распределения с целым и полу целым параметром .
- Моделирование гамма распределения методом исключения при произвольных параметрах.
- Моделирование бета распределения при целых параметрах и методом исключения при произвольных параметрах.
- Биномиальное распределение.
- Моделирование пуассоновского распределения методом обратных функций и через связь с показательным распределением.
- Геометрическое распределение.
- Отрицательно биномиальное распределение.
- Табличный метод моделирования случайных величин.
- Приближенное моделирование нормального распределения.
- Определения случайных процессов. Свойства корреляционных функций. Оценка выборочных корреляций.
- Моделирование случайных процессов на основе канонического разложения.
- Примеры: процесс броуновского движения, марковский гауссовский стационарный процесс.
- Моделирование процесса Пуассона.
- Моделирование стационарного гауссовского процесса с конечным спектром.
- Моделирование рандомизированной модели.
- Условное распределение зависимых гауссовских векторов.

- Моделирование векторного марковского гауссовского процесса.
- Моделирование двухмерного стационарного марковского процесса.
- Моделирование стационарного гауссовского процесса скользящего суммирования.
- Моделирование стационарного гауссовского процесса авторегрессии.

7-й семестр

- Стандартный алгоритм численного интегрирования, его погрешности и трудоемкость.
- Выделение главной части.
- Метод существенной выборки.
- Понижение порядка интегрирования.
- Расслоенная выборка. Минимизация дисперсии.
- Симметризация подынтегральной функции.
- Использование зависимых переменных.
- Моделирование цепи Маркова.
- Решение систем линейных алгебраических уравнений.
- Решение интегральных уравнений методом Монте-Карло.
- Дисперсии оценок и способы их уменьшения.
- Простейшие задачи переноса излучений.

7. Технические средства обучения и математическое обеспечение

В данном курсе, как правило, не используются

8. Активные методы обучения

В данном курсе, как правило, применяются классические аудиторные методы.

9. Материальное обеспечение дисциплины

Требуется стандартное оборудование лекционных аудиторий.

10. Литература

- 1. Ермаков С.М., Михайлов Г.А. Статистическое моделирование. Москва. Наука, 1982.
- 2. Соболь И.М. Численные методы Монте-Карло. Москва. Наука, 1970.
- 3. Михайлов Г.А., Войтишек А.В. Численное статистическое моделирование. Москва. Изд. центр "Академия", 2006.

Составитель:	
доцент, канд. физмат. наук	Т.М.Товстик
Рецензент:	
доцент, канд. физмат. наук	А.Ф.Сизова