
Support vector machines

1 / 52



Optimal separating hyperplanes

A main initiative in early computer science was to find
separating hyperplanes among groups of data
(Rosenblatt (1958) with the perceptron algorithm)

The issue is that if there is a separating hyperplane, there is an
infinite number

An optimal separating hyperplane can be generated by finding
support points and bisecting them.
(Sometimes optimal separating hyperplanes are called maximum margin classifiers)

2 / 52



Basic linear geometry

A hyperplane in Rp is given by

H = {X ∈ Rp : h(X ) = β0 + β>X = 0}

(Usually it is assumed that ||β||2 = 1)

1. The vector β is normal to H
2. For any point X ∈ Rp, the (signed) length of its

orthogonal complement to H is h(X )

3 / 52



Support vector machines (SVM)

Let Yi ∈ {−1, 1}
(It is common with SVMs to code Y this way. With logistic regression, Y is

commonly phrased as {0, 1} due to the connection with Bernoulli trials)

We will generalize this to supervisors with more than 2 levels
at the end

A classification rule induced by a hyperplane is

g(X ) = sgn(X>β + β0)

4 / 52



Separating hyperplanes

Our classification rule is based on a hyperplane H

g(X ) = sgn(X>β + β0)

A correct classification is one such that h(X )Y > 0 and
g(X )Y > 0

The larger the quantity Yh(X ), the more “sure” the
classification

Under classical separability, we can find a function such that
Yih(Xi) > 0

5 / 52



Optimal separating hyperplane

This idea can be encoded in the following convex program

M → max
β0,β

, subject to

Yih(Xi) ≥ M for each i and ||β||2 = 1

Intuition:

• We know that Yih(Xi) > 0 ⇒ g(Xi) = Yi . Hence, larger
Yih(Xi) ⇒ “more” correct classification

• For “more” to have any meaning, we need to normalize
β, thus the other constraint

6 / 52



Optimal separating hyperplane

Let’s take the original program:

M → max
β0,β

, subject to

Yih(Xi) ≥ M for each i and ||β||2 = 1

and rewrite it as

min
β0,β

1

2
||β||22 subject to

Yih(Xi) ≥ 1 for each i

This is still a convex optimization program: quadratic
criterion, linear inequality constraints

7 / 52



Optimal separating hyperplane

We can convert this constrained optimization problem into the
Lagrangian (primal) form

min
β0,β

1

2
||β||22 −

n∑
i=1

αi [Yi(X
>
i β + β0)− 1]

Everything is nice and smooth, so we can take derivatives..

8 / 52



Optimal separating hyperplane

1

2
||β||22 −

n∑
i=1

αi [Yi(X
>
i β + β0)− 1]

Derivatives with respect to β and β0:

• β =
∑n

i=1 αiYiXi

• 0 =
∑n

i=1 αiYi

Substituting into the Lagrangian:

Wolfe Dual =
n∑

i=1

αi −
1

2

n∑
i=1

n∑
k=1

αiαkYiYkX
>
i Xk

(this is all subject to αi ≥ 0)

We want to maximize Wolfe Dual

9 / 52



Optimal separating hyperplane

A side condition, known as complementary slackness states (or
Karush-Kuhn-Tucker (KKT) conditions):

αi [1− Yih(Xi)] = 0 for all i

(The product of Lagrangian parameters and inequalty constraint equals 0)

This implies either:

• αi = 0, which happens if the constraint Yih(Xi) > 1

• αi > 0, which happens if the constraint Yih(Xi) = 1

10 / 52



Optimal separating hyperplane

Taking this relationship

αi [Yih(Xi)− 1] = 0

we see that, for i = 1, . . . , n,

• The points (Xi ,Yi) such that αi > 0 are support vectors

• The points (Xi ,Yi) such that αi = 0 are irrelevant for
classification

End result: ĝ(X ) = sgn(X>β̂ + β̂0)

11 / 52



Support vector classifier

12 / 52



Support vector classifier

Of course, we can’t realistically assume that the data are
linearly separated (even in a transformed space)

In this case, the previous program has no feasible solution

We need to introduce slack variables, ξ, that allow for overlap
among the classes

These slack variables allow for us to encode training
missclassifications into the optimization problem

13 / 52



Support vector classifier

M → max
β0,β,ξ1,...,ξn

, subject to

Yih(Xi) ≥ M (1− ξi), ξi ≥ 0,
∑

ξi ≤ t︸ ︷︷ ︸
new

, for each i

Note that

• t is a tuning parameter. The literature usually refers to t
as a budget

• The separable case corresponds to t = 0

14 / 52



Support vector classifier

We can rewrite the problem again:

min
β0,β,ξ

1

2
||β||22 , subject to

Yih(Xi) ≥ 1−ξi , ξi ≥ 0,
∑

ξi ≤ t︸ ︷︷ ︸
new

, for each i

Converting
∑
ξi ≤ t to the Lagrangian (primal):

min
β0,β

1

2
||β||22 + λ

∑
ξi subject to

Yih(Xi) ≥ 1− ξi , ξi ≥ 0, for each i

15 / 52



SVMs: slack variables

The slack variables give us insight into the problem

• If ξi = 0, then that observation is on correct the side of
the margin

• If ξi =∈ (0, 1], then that observation is on the incorrect
side of the margin, but still correctly classified

• If ξi > 1, then that observation is incorrectly classified

16 / 52



Support vector classifier

Continuing to convert constraints to Lagrangian

min
β0,β,ξ

1

2
||β||22+λ

∑
ξi −

n∑
i=1

αi [Yi(X
>
i β + β0)− (1− ξi)]−

n∑
i=1

γiξi︸ ︷︷ ︸
remaining constraints

Necessary conditions (taking derivatives)

• β =
∑n

i=1 αiYiXi

• 0 =
∑n

i=1 αiYi

• αi = λ− γi
(As well as positivity constraints on Lagrangian parameters)

17 / 52



Support vector classifier

Substituting, we reaquire the Wolfe Dual

This, combined with the KKT conditions uniquely characterize
the solution:

max
α subject to: KKT + Wolfe Dual

n∑
i=1

αi −
1

2

n∑
i=1

n∑
i ′=1

αiαi ′YiYi ′X
>
i Xi ′

Note: the necessary conditions β =
∑n

i=1 αiYiXi imply
estimators of the form

• β̂ =
∑n

i=1 α̂iYiXi

• β̂>X =
∑n

i=1 α̂iYiX
>
i X

18 / 52



SVMs: tuning parameter

We can think of t as a budget for the problem

If t = 0, then there is no budget and we won’t tolerate any
margin violations

If t > 0, then no more than btc observations can be
misclassified

A larger t then leads to larger margins (we allow more margin
violations)

19 / 52



SVMs: tuning parameter

Further intuition:

Like the optimal hyperplane, only observations that violate the
margin determine H

A large t allows for many violations, hence many observations
factor into the fit

A small t means only a few observations do

Hence, t calibrates a bias/variance trade-off, as expected

In practice, t gets selected via cross-validation

20 / 52



SVMs: tuning parameter

−1 0 1 2

−
3

−
2

−
1

0
1

2
3

−1 0 1 2

−
3

−
2

−
1

0
1

2
3

−1 0 1 2

−
3

−
2

−
1

0
1

2
3

−1 0 1 2

−
3

−
2

−
1

0
1

2
3

X1X1

X1X1

X
2

X
2

X
2

X
2

Figure: Figure 9.7 in ISL
21 / 52



Kernel methods

Intuition: Many methods have linear decision boundaries

We know that sometimes this isn’t sufficient to represent data

Example: Sometimes we need to included a polynomial
effect or a log transform in multiple regression

Sometimes, a linear boundary, but in a different space makes
all the difference..

22 / 52



Optimal separating hyperplane

Reminder: The Wolfe dual, which gets maximized over α,
produces the optimal separating hyperplane

Wolf dual =
n∑

i=1

αi −
1

2

n∑
i=1

n∑
k=1

αiαkYiYkX
>
i Xk

(this is all subject to αi ≥ 0)

A similar result holds after the introduction of slack variables
(e.g. support vector classifiers)

Important: The features only enter via

X>X ′ = 〈X ,X ′〉

23 / 52



Kernel Methods

24 / 52



Nonnegative definite matrices
Let A ∈ Rp×p be a symmetric, nonnegative definite matrix:

z>Az ≥ 0 for all z and A> = A

Then, A has an eigenvalue expansion

A = UDU> =

p∑
j=1

djuju
>
j

where dj ≥ 0

Observation: Each such A, generates a new inner product

〈z , z ′〉 = z>z ′ = z> I︸︷︷︸
Identity

z ′

〈z , z ′〉A = z>Az ′

(If we enforce A to be positive definite, then 〈z, z〉A = ||z||2A is a norm)

25 / 52



Nonnegative definite matrices

Suppose Aj
i is the (i , j) entry in A, and Ai is the i th row

Az =

A
>
1
...
A>p

 z =

A
>
1 z
...

A>p z


Note: Multiplication by A is really taking inner products with
its rows.

Hence, Ai is called the (multiplication) kernel of matrix A

26 / 52



Kernel methods

k : X × X → R is a symmetric, nonnegative definite kernel
Write the eigenvalue expansion of k as

k(X ,X ′) =
∞∑
j=1

θjφj(X )φj(X
′)

with

• θj ≥ 0 (nonnegative definite)

•
∣∣∣∣(θj)∞j=1

∣∣∣∣
2

=
∑∞

j=1 θ
2
j <∞

• The φj are orthogonal eigenfunctions:
∫
φjφj ′ = δj ,j ′

We can write any f ∈ Hk with two constraints

• f (x) =
∑∞

j=1 fjφj(x)

• 〈f , f 〉Hk
= ||f ||2Hk

=
∑∞

j=1 f
2
j /θj <∞

27 / 52



Kernel: Example

Back to polynomial terms/interactions:

Form
kd(X ,X ′) = (X>X ′ + 1)d

kd has M =
(
p+d
d

)
eigenfunctions

These span the space of polynomials in Rp with degree d

28 / 52



Kernel: Example

Example: Let d = p = 2⇒ M = 6 and

k(u, v) = 1 + 2u1v1 + 2u2v2 + u2
1v

2
1 + u2

2v
2
2 + 2u1u2v1v2

=
M∑
k=1

Φk(u)Φk(v)

= Φ(u)>Φ(v)

= 〈Φ(u),Φ(v)〉

where
Φ(v)> = (1,

√
2v1,
√

2v2, v
2
1 , v

2
2 ,
√

2v1v2)

29 / 52



Kernel: Conclusion

Let’s recap:

k(u, v) = 1 + 2u1v1 + 2u2v2 + u2
1v

2
1 + u2

2v
2
2 + 2u1u2v1v2

= 〈Φ(u),Φ(v)〉

• Some methods only involve features via inner products
X>X ′ = 〈X ,X ′〉
(We’ve explicitly seen two: ridge regression and support vector classifiers)

• If we make transformations of X to Φ(X ), the procedure
depends on Φ(X )>Φ(X ′) = 〈Φ(X ),Φ(X ′)〉
• We can compute this inner product via the kernel:

k(X ,X ′) = 〈Φ(X ),Φ(X ′)〉

30 / 52



(Kernel) SVMs

31 / 52



Kernel SVM
Recall:

1

2
||β||22 −

n∑
i=1

αi [Yi(X
>
i β + β0)− 1]

Derivatives with respect to β and β0 imply:

• β =
∑n

i=1 αiYiXi

• 0 =
∑n

i=1 αiYi

Write the solution function

h(X ) = β0 + β>X = β0 +
n∑

i=1

αiYiX
>
i X

Kernelize the support vector classifier ⇒ support vector
machine (SVM):

h(X ) = β0 +
n∑

i=1

αiYik(Xi ,X )

32 / 52



General kernel machines
After specifying a kernel function, it can be shown that many
procedures have a solution of the form

f̂ (X ) =
n∑

i=1

γik(X ,Xi)

For some γ1, . . . , γn

Also, this is equivalent to performing the method in the space
given by the eigenfunctions of k

k(u, v) =
∞∑
j=1

θjφj(u)φj(v)

Also, (the) feature map is

Φ = [φ1, . . . , φp, . . .]

33 / 52



Kernel SVM: A reminder

The dual Lagrangian is:

`D(γ) =
∑
i

γi −
1

2

∑
i

∑
i ′

γiγi ′YiYi ′X
>
i Xi ′

with side conditions: γi ∈ [0,C ] and γ>Y = 0

Let’s replace the term X>i Xi ′ = 〈Xi ,Xi ′〉 with 〈Φ(Xi),Φ(Xi ′)〉

34 / 52



Kernel SVMs

Hence (and luckily) specifying Φ itself unnecessary,
(Luckily, as many kernels have difficult to compute eigenfunctions)

We need only define the kernel that is symmetric, positive
definite

Some common choices for SVMs:

• Polynomial: k(x , y) = (1 + x>y)d

• Radial basis: k(x , y) = e−τ ||x−y ||
b
b

(For example, b = 2 and τ = 1/(2σ2) is (proportional to) the Gaussian density)

35 / 52



Kernel SVMs: Summary
Reminder: the solution form for SVM is

β =
n∑

i=1

αiYiXi

Kernelized, this is

β =
n∑

i=1

αiYiΦ(Xi)

Therefore, the induced hyperplane is:

h(X ) = Φ(X )>β + β0 =
n∑

i=1

αiYi〈Φ(X ),Φ(Xi)〉+ β0

=
n∑

i=1

αiYik(X ,Xi) + β0

The final classification is still ĝ(X ) = sgn(ĥ(X ))
36 / 52



SVMs via penalization

37 / 52



SVMs via penalization
Note: SVMs can be derived from penalized loss methods

The support vector classifier optimization problem:

min
β0,β

1

2
||β||22 + λ

∑
ξi subject to

Yih(Xi) ≥ 1− ξi , ξi ≥ 0, , for each i

Writing h(X ) = Φ(X )>β + β0, consider

min
β,β0

n∑
i=1

[1− Yih(Xi)]+ + τ ||β||22

These optimization problems are the same!
(With the relation: 2λ = 1/τ)

38 / 52



SVMs via penalization

The loss part is the hinge loss function

`(X ,Y ) = [1− Yh(X )]+

The hinge loss approximates the zero-one loss function
underlying classification

It has one major advantage, however: convexity

39 / 52



Surrogate losses: convex relaxation
Looking at

min
β,β0

n∑
i=1

[1− Yih(Xi)]+ + τ ||β||22

It is tempting to minimize (analogous to linear regression)

n∑
i=1

1(Yi 6= ĝ(Xi)) + τ ||β||22

However, this is nonconvex (in u = h(X )Y )

A common trick is to approximate the nonconvex objective
with a convex one
(This is known as convex relaxation with a surrogate loss function)

40 / 52



Surrogate losses

Idea: We can use a surrogate loss that mimics this function
while still being convex

It turns out we have already done that! (twice)

• Hinge: [1− Yh(X )]+

• Logistic: log(1 + e−Yh(X ))

41 / 52



Multiclass classification

42 / 52



Multiclass SVMs

Sometimes, it becomes necessary to do multiclass classification

There are two main approaches:

• One-versus-one

• One-vesus-all

43 / 52



Multiclass SVMs: One-versus-one

Here, for G possible classes, we run G (G − 1)/2 possible
pairwise classifications

For a given test point X , we find ĝk(X ) for
k = 1, . . . ,G (G − 1)/2 fits

The result is a vector Ĝ ∈ RG with the total number of times
X was assigned to each class

We report ĝ(X ) = arg maxg Ĝ

This approach uses all the class information, but can be slow

44 / 52



Multiclass SVMs: One-vesus-all

Here, we fit only G SVMs by respectively collapsing over all
size G − 1 subsets of {1, . . . ,G}
(This is compared with G(G − 1)/2 comparisons for one-versus-one)

Take all ĥg (X ) for g = 1, . . . ,G , where class g is coded 1 and
“the rest” is coded -1

Assign ĝ(X ) = arg maxg ĥg (X )

45 / 52



Background: Structural Risk
Minimization

46 / 52



Capacity and Generalization

• Generalization: Figure out similarities between
already-seen data and new data

I Too much: “Square piece of paper? That’s a $100 bill”

• Capacity: Ability to allocate new categories for data
I Too much: “#L26118670? It’s a fake; all $100 bills I’ve

seen had other serial numbers”

• They are competitive with one another

• How to strike the right balance?

47 / 52



Empirical Risk

• We are given n observations (xi , yi)
I xi ∈ Rp

I yi ∈ {−1, 1}
• Learn y = f (x, α) by tuning α

• Expected test error (risk) and empirical risk:

R(α) =
1

2

∫
|y − f (x, α)|dP(x, y)

Remp(α) =
1

2l

∑
|yi − f (xi , α)|

48 / 52



Risk Bound

• For 0/1 loss and with probability 1− η, 0 < η < 1:

R(α) ≤ Remp(α) +

√
h(1 + log 2n

h
)− log η

4

n

where h ∈ N is the Vapnik-Chervonenkis (VC) dimension

• Second term: “VC confidence”

49 / 52



Importance of Risk Bound

1. Not dependent on P(x, y)

2. lhs not computable

3. rhs computable if we know h

• For a given task, choose the machine that minimizes the
risk bound!

• Even when bound not tight, we can contrast “tightness”
of various families of machines

50 / 52



The VC dimension

• For a family of functions f (α):
I Choose a set of n points
I Label them in any way
I ∃α s.t. f (α) can recognize (“shatter”) them

• Then f (α) has VC at least n

51 / 52



Example: Hyperplanes in Rn

• Choosing 4 planar points:
I they can’t be separated by one line for all of their

possible labelings (one labeling will be inseparable)

• Similarly, p + 1 points in Rp can’t be separated for all
labelings

• So the VC dimension of hyperplanes in Rp is p + 1

52 / 52


